
Advanced Reporting with
Microsoft Excel

Doug Hennig
Stonefield Software Inc.

Email: doug@doughennig.com
Corporate Web sites: stonefieldquery.com

stonefieldsoftware.com
Personal Web site: DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

It’s easy to add a feature to your application to export to Microsoft Excel: XFRX, Craig Boyd’s
GridExtras, several VFPX projects including Greg Green’s excellent WorkbookXLSX, and even a
simple COPY TYPE XL5 can create an Excel document. However, such documents are simple,
boring lists of data. This session looks at techniques to create attractive, useful reports in
Excel, driven with data from your VFP applications.

mailto:doug@doughennig.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 2 of 37

Introduction
Microsoft Excel is pretty much ubiquitous in business settings. It’s not only good for
calculations, but thanks to its interactive nature and variety of data visualizations
(PivotTables, PivotCharts, maps, etc.), it’s highly used as a reporting tool.

It’s so easy to add an Excel export feature to your applications that not providing it seems
like a missing feature. In this document, we’ll look at a variety of techniques to do that but
also how to make your Excel documents pop so users won’t find them just to be a boring
lists of data.

Creating Excel documents
Let’s look at a variety of ways to create Excel documents from VFP data.

COPY TO

The COPY TO command supports several formats Excel can open:

• XLS: generates an Excel 2.0 worksheet file.

• XL5: generates an Excel 5.0 worksheet file.

• CSV: generates a comma-separated values (CSV) file with a header row of field
names.

• Delimited: generates a CSV file (with a TXT extension unless you specify otherwise)
without a header row.

The advantages of COPY TO are:

• It’s fast.

• It only needs a single line of code and there are no dependencies on other tools.

• The workstation doesn’t need to have Excel installed to create the file, only to open
it.

The disadvantages are:

• The XLS and XL5 formats are old, so they may need to be converted to the newer
XLSX format, and only support 65,535 rows, which may be a deal-breaker. Also, XLS
files can’t be edited by default due to policy settings.

• Memo fields aren’t supported, which also may be a deal-breaker.

• You have no control over formatting.

• COPY TO creates a new file so templates aren’t supported (I’ll discuss templates
later in this document).

• Some values of character fields may be treated as numeric in CSV files. For example,
a product code like “10E06” is treated as scientific notation, resulting in “1.00E+06.”

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 3 of 37

• Logical values are treated as text (“T” and “F”) rather than Boolean in CSV files.

• Dates are output to CSV using your SET DATE format, which may cause a problem
when Excel imports them. Also, blank dates are treated as text (“ / / “ or “ - - “)
rather than empty dates.

If the disadvantages aren’t a concern (for example, there are less than 65,535 rows and no
memo fields) and you don’t care about formatting, COPY TO XL5 is a reasonable choice for
quick-and-dirty output.

CSVProcessor

CSVProcessor is a VFPX project (https://github.com/atlopes/csv) from Antonio Lopes that
provides additional control over CSV output. For example, it supports outputting memo
fields.

CSVProcessor has a dependency on another VFPX project, Name Syntax Checker
(https://github.com/atlopes/names), so you must install both and add several of the PRGs
to your project.

Here’s an example of creating a CSV file:

do CSV
loCSV = createobject('CSVProcessor')
use sample
* Set loCSV.HeaderRow to .F. to omit header row
loCSV.LogicalTrue = 'TRUE'
loCSV.LogicalFalse = 'FALSE'
loCSV.Export('doc6.csv')

CSVProcessor has several advantages over COPY TO CSV:

• Dates are output as YYYY-MM-DD so Excel can understand the format properly, and
blank dates are output as blank.

• You can configure CSVProcessor to output logical values as “TRUE” and “FALSE”,
which Excel expects, rather than text.

• Memo fields are supported, including carriage returns.

However, the result is still a CSV file so some of the disadvantages discussed in the previous
section are still applicable.

GridExtras

As its name suggests, Craig Boyd’s GridExtras provides additional features to grids: hiding
and showing columns, rearranging columns, searching and filtering, and, pertinent to this
discussion, output to Excel. Adding GridExtras to a grid is easy: drop a GridExtra object
from GridExtras.vcx onto a form and tell it which grid its associated with using code like
this:

https://github.com/atlopes/csv
https://github.com/atlopes/names

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 4 of 37

This.oGridExtra.GridExpression = 'Thisform.grdCustomers'
This.oGridExtra.Setup()

Right-click any of the headers in the grid to display the GridExtra menu shown in Figure 1.
I won’t discuss the other features of GridExtras here, just the Excel Export function.

Figure 1. GridExtras adds a menu of features to a VFP grid.

The Excel Export function creates a simple Excel document containing the visible columns
in the grid but, unlike WorkbookXLSX which we’ll discuss later, not respecting any
formatting of the grid. Note that Excel must be installed along with the Microsoft Access
Database Engine.

What makes GridExtras interesting is how it performs the export. All the code is in
GridExtraProcs.prg. The CopyToExcel procedure begins by calling CreateExcelTemplate to
create an empty XLSX document. It does that by generating a binary file from a set of hard-
coded bytes. CopyToExcel then creates an OLE DB connection to the document:

m.loConnection = CreateObject ("ADODB.Connection")
m.loConnection.ConnectionString = [Provider=Microsoft.ACE.OLEDB.12.0;Data Source="] +
 m.tcXLSFile + [";Extended Properties="Excel 12.0 Xml;HDR=Yes;";]
m.loConnection.Open()

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 5 of 37

It finally uses a CursorAdapter to create and update a “table” (really, a worksheet) in the
document from the records in the cursor displayed in the grid.

GridExtras pre-dates WorkbookXLSX, so while it was an interesting technique in its day,
there are better mechanisms now as we’ll see. However, if you want to use the functionality
of GridExtras, you get rudimentary Excel output with no extra work so it may be worth
considering.

XFRX

XFRX (https://eqeus.com) is a reporting add-on for VFP developers. It provides a
customizable preview window that has a lot more features than the VFP preview window
and supports output to many different file formats, including PDF, Microsoft Word, and
Excel. FoxyPreviewer, another reporting add-on, also supports Excel output but I haven’t
used it so I won’t discuss it. Rick Schummer presented a session comparing XFRX and
FoxyPreviewer titled “Visual FoxPro Reporting: XFRX vs. FoxyPreviewer” at the May 2022
Virtual Fox Fest (https://virtualfoxfest.com). You can watch a video of his presentation at
https://youtu.be/dOAM70CFnt8.

XFRX has two mechanisms to output to Excel: using a report with a custom ReportListener
and using the XFRX_CopyToXLSX function.

ReportListener

XFRX works with any VFP FRX report because it uses a ReportListener subclass to do its
magic. Here’s an example:

loListener = XFRX('XFRX#LISTENER')
lnReturn = loListener.SetParams('xfrx1.xlsx', , .T., , , , 'NATIVE_FXLSX')
if lnReturn = 0
 report form Customers object loListener
endif lnReturn = 0

The SetParams method specifies options such the name of the file to create, the type of
output, and whether to open the file after creation.

XFRX has four ways to output to Excel. “XLS” and “XLSPLAIN” generate XLS files and
require Excel to be installed. “NATIVE_FXLSX” and “NATIVE_PFXLSX” generate XLSX files
and don’t require Excel. “NATIVE_PFXLSX” is a much cleaner output so that’s the one I
recommend. In both cases, the Excel document looks as much like the output of the report
as possible; see Figure 2. The XFRX documentation
(https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/3899449/Excel+specific+featur
es) provides details for adjustments you can make to the output.

https://eqeus.com/
https://virtualfoxfest.com/
https://youtu.be/dOAM70CFnt8
https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/3899449/Excel+specific+features
https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/3899449/Excel+specific+features

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 6 of 37

Figure 2. Excel documents created by XFRX look as much like the report as possible.

While XFRX makes attractive Excel documents (well, as attractive as your FRX report is), I
don’t think they’re as useful as other types of output because of the formatting. If I want a
file to look as much like the VFP report as possible, I usually output it to PDF.

XFRX_CopyToXLSX

The XFRX_CopyToXLSX function in XFRX.prg creates an Excel document from a cursor
using a single command. Here’s an example:

lnError = XFRX_CopyToXLSX(alias(), 'Documents\xfrx3.xlsx', , 'Customers')

It also supports formatting options, including conditional formatting, column width, header
names and styles, and text trimming, using a callback function specified as the third
parameter. However, I couldn’t get the example code at
https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/10485784/Data+export+to+XLS
X+and+ODS to work so I wasn’t able to test it.

If you already have XFRX, this is a quick way to create an Excel document.

Excel automation

Assuming it’s installed on the computer, Excel is available as a COM object you can control
from VFP. Instantiate Excel.Application and then set properties and call methods as
necessary. To open an existing Excel document, use code like:

loExcel = createobject('Excel.Application')
loDocument = loExcel.Workbooks.Open(lcDocument)

https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/10485784/Data+export+to+XLSX+and+ODS
https://eqeuscom.atlassian.net/wiki/spaces/DOC/pages/10485784/Data+export+to+XLSX+and+ODS

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 7 of 37

Let’s look at an example: creating a PivotTable from VFP data. This code, taken from
CreatePivotTable.prg, assumes an Excel document contains the source data for a PivotTable
in Sheet1. First, get an object for the source data:

with loExcel
 lnRecords = reccount()
 lnColumns = fcount()
 lcEndRange = alltrim(GetColumnletter(lnColumns)) + alltrim(str(lnRecords + 1))
 loSource = .Sheets[1].Range('A1:' + lcEndRange)

Next, add a new sheet named PivotTable to the document and create a PivotTable in the
upper left corner:

 loPivotSheet = .WorkSheets.Add()
 loPivotSheet.Name = 'PivotTable'
 loDestination = loPivotSheet.Range('A1')
 try
 loPivot = loPivotSheet.PivotTableWizard(1, loSource, loDestination, ;
 'PivotTable', .T., .T.)
 catch to loException
 llReturn = .F.
 endtry

This code sets up the PivotTable. taFields is an array containing the name of each field to be
used in the PivotTable, where in the PivotTable to place it (row, column, or value), and the
numeric format.

 lnFields = alen(taFields, 1)
 for lnI = 1 to lnFields
 if taFields[lnI, 2] <> xlHidden
 lcCurField = taFields[lnI, 1]
 loField = loPivot.PivotFields[lcCurField]
 loField.Orientation = taFields[lnI, 2]
 if taFields[lnI, 2] = xlDataField
 loField.NumberFormat = taFields[lnI, 3]
 endif taFields[lnI, 2] = xlDataField
 endif taFields[lnI, 2] <> xlHidden
 next lnI

Finally, save the spreadsheet:

 loExcel.DisplayAlerts = .F.
 loDocument.Save()
 loExcel.Quit()
endwith

Although there’s full documentation for the Excel object model online, you might find
creating an Excel script (formerly called macros) useful to determine how to automate
Excel. On the Automate tab, click Record Actions, do the steps you want to automate, click
Stop, and then look at the generated code in the Code Editor. For example, I selected some
cells, chose Format, Format Cells, Font, and selected Bold. The following code was
generated:

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 8 of 37

function main(workbook: ExcelScript.Workbook) {
 let selectedSheet = workbook.getActiveWorksheet();
 // Set font bold to true for range B8:C15 on selectedSheet
 selectedSheet.getRange("B8:C15").getFormat().getFont().setBold(true);
}

Converting a script to VFP can be tricky. In this case, the VFP equivalent is:

loExcel = createobject('Excel.Application')
loWorkBook = loExcel.Workbooks.Open(lcDocument)
loSheet = loWorkBook.ActiveSheet()
loSheet.Range("B8:C15").Font.Bold = .T.
loWorkBook.Save()
loExcel.Quit()

The code in yellow was converted from the script. The rest of the code is needed to
instantiate Excel, open the document, save the document, and quit Excel. But the converted
code isn’t a direct correlation to the script code. There is no getRange method of a Sheet;
instead it’s Range. Instead of using setBold, you set the Bold property. The best way to
figure out what to do is to debug the code and let VFP IntelliSense help you with object
members as you can see in Figure 3. You can even set loExcel.Visible to .T. so you can
immediately see the effect of a command as you execute it.

Figure 3. VFP IntelliSense can help with Excel automation.

The advantages of using Excel automation are:

• You have full access to the Excel object model so you can do anything the object
model supports.

• VFP provides IntelliSense for the Excel COM object.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 9 of 37

• Because you can read an existing document, make whatever changes are necessary,
and save to a different document, you can use Excel automation for template-based
reporting, discussed later in this document.

The disadvantages are:

• Excel must be installed on the workstation.

• Excel automation is slow compared to other techniques.

• It usually involves writing a lot of code.

• You have to learn the Excel API to do anything more than the simplest tasks.

• You must change the code when the document being output or the template
changes.

WorkbookXLSX

Greg Green has created an incredible tool named WorkbookXLSX, available as a VFPX
project at https://github.com/ggreen86/XLSX-Workbook-Class. WorkbookXLSX has a large
set of features, including:

• Writes XLSX documents directly; Excel doesn’t have to be installed on the computer.

• Supports creating a document from a VFP cursor or grid with a single method call.

• Reads existing XLSX documents so you can make necessary changes and save to the
same or a new document.

• Allows you to programmatically assign values and formats (value formats, borders,
colors, etc.) to cells, merge cells, and many other operations.

WorkbookXLSX consists of a single class: VFPXWorkbookXLSX in VFPXWorkbookXLSX.vcx.
You can either drop it on a form or instantiate it into a variable and call the desired
methods. Here’s an example that creates Customers.xlsx from a cursor named Customers:

loExcel = newobject('VFPxWorkbookXLSX', 'VFPxWorkbookXLSX.vcx')
loExcel.SaveTableToWorkbookEx('Customers', 'Customers.xlsx')

The resulting document is shown in Figure 4.

https://github.com/ggreen86/XLSX-Workbook-Class

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 10 of 37

Figure 4. WorkbookXLSX can create an Excel document from a cursor with a single method call.

That’s a boring-looking document, so let’s pass some additional parameters to auto-fit
columns and create a table format:

loExcel.SaveTableToWorkbookEx('Customers', 'Customers.xlsx', .NULL., .T., ;
 'Customers', 1, 1, .T., TABLE_STYLE_LIGHT13)

TABLE_STYLE_LIGHT13 is a constant defined in VFPXWorkbookXLSX.h that specifies a
particular table style. The result, shown in Figure 5, is more attractive.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 11 of 37

Figure 5. Specifying additional parameters can make a more attractive document.

You can create a document from a grid by calling SaveGridToWorkbook. It respects the
formatting of the grid, including fonts, column widths, and colors (including dynamic
colors).

lnWB = loExcel.CreateWorkbook('Customers.xlsx')
loExcel.SaveGridToWorkbook(Thisform.grdCustomers, lnWB, .T., .T., 'Customers', ;
 .F., .T.)

This code is taken from WorkbookXLSXTest.scx, included with the sample files
accompanying this document and shown in Figure 6.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 12 of 37

Figure 6. The grid used as the source for an Excel document.

The DynamicBackColor property of the columns displays Canadian companies in red, US in
green, and UK in yellow. The resulting Excel document, shown in Figure 7, looks just like
the grid.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 13 of 37

Figure 7. WorkbookXLSX can create a document that looks just like the VFP grid it’s sourced from.

You can create documents programmatically by calling methods to create a workbook, set
column widths, set cell values and formats, and save the resulting document.
TestWorkbookXLSX2.prg is a sample program that creates the document shown in Figure
8.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 14 of 37

Figure 8. You can create Excel documents programmatically.

Here’s the code that creates the document:

loExcel = newobject('VFPXWorkbookXLSX', 'WorkbookXLSX\VFPXWorkbookXLSX.vcx')
lnWB = loExcel.CreateWorkbook(lcPath)
lnSheet = loExcel.AddSheet(lnWB, 'Shipping')

This code sets column widths:

loExcel.SetColumnWidth(lnWB, lnSheet, 1, 29)
loExcel.SetColumnWidth(lnWB, lnSheet, 2, 8)

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 15 of 37

loExcel.SetColumnWidth(lnWB, lnSheet, 3, 18)

This code creates a custom style that used for the header rows:

lnStyleHeading = loExcel.CreateFormatStyle(lnWB)
loExcel.AddStyleBorders(lnWB, lnStyleHeading, BORDER_LEFT + BORDER_RIGHT + ;
 BORDER_TOP + BORDER_BOTTOM, BORDER_STYLE_THIN)
loExcel.AddStyleFont(lnWB, lnStyleHeading, 'Calibri', 14, .T., .F., ;
 rgb(255, 255, 255))
loExcel.AddStyleFill(lnWB, lnStyleHeading, rgb(0, 128, 192))
loExcel.AddStyleHorizAlignment(lnWB, lnStyleHeading, CELL_HORIZ_ALIGN_CENTER)

This code sets the value and style for the header row and merges the cells in that row:

loExcel.SetCellValue(lnWB, lnSheet, 1, 1, 'Shipping List')
loExcel.SetCellStyleRange(lnWB, lnSheet, 1, 1, 1, 6, lnStyleHeading)
loExcel.MergeCells(lnWB, lnSheet, 1, 1, 1, 6)

This saves the document:

loExcel.SaveWorkbook(lnWB)

As you can see, similar to Excel automation, it can be a lot of code to write since you are
manually editing every cell. However, the benefit is that you have complete control over the
appearance of the document.

The advantages of WorkbookXLS are:

• It doesn’t require Excel to be installed.

• Because you can read an existing document, make whatever changes are necessary,
and save to a different document, you can use WorkbookXLSS for template-based
reporting, discussed in the next section.

• It’s much faster than Excel automation, as it uses cursors to hold the document
contents, writes to the XML files that comprise the document, and zips the files to
create the XLSX file.

• It has methods to output from a grid, include most formatting support, or a cursor.

The disadvantages are:

• There can be lots of code to write.

• WorkbookXLSX doesn’t provide full access to the Excel object model so there may
be some things you can’t do that you can using Excel automation.

• There are a lot of methods and properties to learn (although the documentation is
quite thorough).

• You must change the code when the document being output or the template
changes.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 16 of 37

There’s a lot to like about WorkbookXLSX and Greg is constantly adding new features and
fixing issues. I use WorkbookXLSX in just about every application I write.

Template-based reporting
I’ve been doing template-based reporting for the past few years and really like this
technique. The basic idea is that you create an Excel document (the “template”) that
contains raw data in one sheet (you can use a separate document to contain the raw data
but I like having a self-contained document) while the rest of the sheets manipulate that
data (PivotTables, charts, etc.). The source of the raw data is a CSV or XML file generated
from VFP. All the user does to update the document with the latest data is run the VFP
process to generate the file and then open and refresh the Excel document. We’ll look at
how you can even automate that step.

The advantages of this technique are:

• It uses a template so you don’t need extensive, complex code to generate the
document.

• It’s fast: all you’re doing in VFP is generating a CSV or XML file.

• You don’t need Excel installed on the machine generating the file (obviously the user
needs Excel to open the document on their machine).

• You don’t necessarily have to create or maintain the template: an Excel user with
moderate knowledge can do that themselves. The document can be as complex as
the user wants.

• There’s no change to the code generating the file when the template changes unless
data changes are needed.

There are few disadvantages:

• Getting started is sort of a chicken-and-egg approach: the CSV or XML file has to
exist before the Excel document but you may not know what data the user needs
until the document exists.

Let’s go through the steps to use this technique.

Generate the data file

As I mentioned, the source of the raw data in the Excel document can be either a CSV or
XML file. I’ve used both but prefer an XML file because it defines the structure of the data
rather than Excel having to figure it out from the content. The rest of this document
assumes an XML file.

We’re going to create a sales analysis spreadsheet from a slightly altered version of the
Northwind sample database that comes with VFP (I add UnitCost to the OrderDetails table
so we can calculate profit). The following code generates the cursor shown in Figure 9 and
outputs it to an XML document.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 17 of 37

select Region.RegionDescription as Region, ;
 Orders.OrderDate, ;
 month(Orders.OrderDate) as Month, ;
 year(Orders.OrderDate) as Year, ;
 Categories.CategoryName as Category, ;
 Products.ProductName as Product, ;
 OrderDetails.Quantity, ;
 OrderDetails.UnitPrice, ;
 OrderDetails.UnitCost, ;
 OrderDetails.UnitPrice * OrderDetails.Quantity as TotalPrice, ;
 OrderDetails.UnitCost * OrderDetails.Quantity as TotalCost, ;
 Customers.Country ;
 from Orders ;
 join OrderDetails on Orders.OrderID = OrderDetails.OrderID ;
 join Products on OrderDetails.ProductID = Products.ProductID ;
 join Categories on Products.CategoryID = Categories.CategoryID ;
 join Employees on Orders.EmployeeID = Employees.EmployeeID ;
 join EmployeeTerritories ;
 on Employees.EmployeeID = EmployeeTerritories.EmployeeID ;
 join Territories ;
 on EmployeeTerritories.TerritoryID = Territories.TerritoryID ;
 join Region on Territories.RegionID = Region.RegionID ;
 join Customers on Orders.CustomerID = Customers.CustomerID ;
 into cursor RawData

cursortoxml(alias(), 'sales.xml', 1, 512 + 48)

Figure 9. The cursor used as the source of the raw data for our spreadsheet.

The cursor is denormalized—Month, Year, TotalPrice, and TotalCost are derived values—to
make reporting easier. It’s also named “RawData” so that’s the name used in the XML.

This process can run from a scheduled task, such as nightly, or on demand, such as when
the user chooses a menu item or clicks a button in an application.

Creating the template

• Create a new Excel document.

• Choose the Data tab, click Get Data, From File, From XML (Figure 10), and select the
XML file in the dialog that appears.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 18 of 37

Figure 10. Getting data from the XML file into Excel.

• Select “rawdata” in the Navigator dialog and click Load (Figure 11).

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 19 of 37

Figure 11. Previewing and loading the XML data.

The result is a new sheet named “rawdata” containing the VFP data in a table named
“rawdata” (click the down arrow in the Name Box to see the name or see the Table Name
entry in the Table Design tab). See Figure 12.

To avoid confusion between the rawdata sheet and the rawdata table, let’s rename the
table to “table_rawdata” by updating Table Name in the Table Design tab.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 20 of 37

Figure 12. The VFP data is loaded into an Excel table.

Note that when I say “table,” I don’t mean some rows and columns; I mean an Excel Table
object. Tables are underused but have a lot of advantages:

• They can be referenced by name rather than range. For example, this table can be
specified as “Table_rawdata” rather than rawdata!A1:K10130.

• Columns within a table can also be specified by name. For example,
“=Table_rawdata[region]” refers to column A in the table without hard-coding the
column name. This is especially useful if the structure of the table changes, such as
new columns inserted between existing ones. Specifying a table or table[column]
name is called a “structured reference.”

• They auto-expand as data is added. For example, if more columns or rows are
added, you’d have to edit everything referencing it as a range but not change
anything if it’s referenced as a table.

• Formulas can apply to a single cell in a table or an entire column. For example,
entering a formula of “=Table_rawdata[@totalcost] *0.1” in cell L2 calculates 10% of
cell K2. Entering “=Table_rawdata[totalcost] *0.1” instead fills column L with 10% of
the values in column K.

• You can attach a Slicer to a table to provide easy filtering. I’ll discuss Slicers in more
detail later.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 21 of 37

• You can format a table using one of the built-in styles. You can also have banded
rows and/or columns (every second row and/or column is a different color), add a
total row, and bold the first or last column.

You can convert a range into a Table by clicking Format as Table in the Home tab or
pressing Ctrl+T.

You can rename the table if you wish: select any cell in the table, select the Table Design
tab, and enter the desired name in the Table Name textbox.

See https://support.microsoft.com/en-us/office/using-structured-references-with-excel-
tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e for more information on structured
references, such as naming rules.

Presenting the data

Now let’s present the data in a more attractive manner than just a table of raw numbers.

• Drag the tab for Sheet1 so it appears to the left of rawdata (not required but I like to
have rawdata as the last sheet) and rename it to Sales (right-click the tab and choose
Rename).

• Select any cell in the table on the rawdata sheet.

• From the Insert tab, choose Pivot Table, From Table/Range. In the dialog that
appears (Figure 13), Table/Range is already filled in with “Table_rawdata”. Select
“Existing Worksheet,” click the Sales sheet, and click in cell A1, then choose OK.

Figure 13. Insert a PivotTable from the table.

• In the PivotTable Fields panel, check “region,” “year,” and “totalprice.” Drag “Sum of
year” from the Values section in the panel to Columns (Figure 14).

https://support.microsoft.com/en-us/office/using-structured-references-with-excel-tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e
https://support.microsoft.com/en-us/office/using-structured-references-with-excel-tables-f5ed2452-2337-4f71-bed3-c8ae6d2b276e

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 22 of 37

Figure 14. Set up the PivotTable with the desired row, column, and value fields.

• Click “Sum of totalprice” in the Values section and choose Value Field Settings.
Enter “Sales” for Custom Name, click the Number Format button, and select
Currency.

• Select cell B1 and enter “Year.”

• Select cell A2 and enter “Region.”

• The PivotTable should look like Figure 15.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 23 of 37

Figure 15. We created a PivotTable quickly and easily.

Repeat these steps to create a PivotTable with category in the rows rather than region.

Now let’s add a Slicer. A Slicer is a control that applies filtering to another object.

• Click any cell in the first PivotTable and choose Slicer from the Insert tab. Check
category and click OK. Drag the Slicer object so it’s beside the PivotTable.

• Repeat for the second PivotTable but choose region for the field.

Clicking a category or a region in the Slicers filters the associated PivotTable to only show
sales for the selected filter (Figure 16).

You can connect a Slicer to more than one PivotTable or PivotChart. Right-click the Slicer,
choose Report Connections, and check the desired PivotTables and PivotCharts in the list.

You can format the Slicer using the options on the Slicer tab of the ribbon when the Slicer is
selected.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 24 of 37

Figure 16. Slicers filter the data shown in PivotTables and other objects.

Let’s add a Timeline. A Timeline is like a Slicer except it filters on dates. Click any cell in the
first PivotTable and choose Timeline from the Insert tab. Check orderdate and click OK.
Drag the Timeline object to a convenient location.

You can choose Days, Months, Quarters, or Years for the filter type and then drag the slider
to show which values you want. See Figure 17 for an example.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 25 of 37

Figure 17. Timelines provide a visual tool to filter on dates.

As with Slicers, you can connect a Timeline to more than one PivotTable or PivotChart and
format it as desired.

Rows of numbers often make people’s eyes glaze over, so let’s add a chart to visualize the
data.

• Click any cell in the first PivotTable and from the PivotTable Analyze tab, choose
PivotChart. Select Column and click OK.

• Move the chart beside the Slicer for the first PivotTable. The result is shown in
Figure 18.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 26 of 37

Figure 18. A PivotChart makes it easier to visualize the data.

Custom presentation

Some users find PivotTables intimidating, so let’s create a sheet where the user can see
daily sales broken down by region and day in a simpler manner.

• Create a new sheet: click the + in the tab strip at the bottom and rename it to Daily.

• Enter “Region” in A1, “Starting Date” in A2, “Date” in A4, and “Weekday” in A5.

• We want to create a selector for region similar to a Slicer. To do that, we need two
things: the unique values of the region column and a data validation. In cell M1 of
the rawdata sheet, enter this formula: =SORT(UNIQUE(Table_rawdata[region])).
The UNIQUE function fills cells with unique values from a range and the SORT
function sorts them. The result is that cells M1 through M4 contain “Eastern,”
“Northern,” “Southern,” and “Western.” Then select cell B1 on the Daily sheet, click
the Data tab, click Data Validation, and in the dialog that appears, set Allow to List
and Source to “=rawdata!M1:M4. The resulting drop-down list is shown in
Figure 19.

Figure 19. Drop-down lists are easy to create in Excel.

• Cell B2 is the starting date to use for daily sales, so enter a date such as
“12/01/2021.”

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 27 of 37

• In B4, put “=B2” so it contains the starting date. In C4, put “=B4+1” so it’s the next
day, then select that cell through H4 and press Ctrl+R to fill right so we have a week
of dates.

• In B5, put “=WEEKDAY(B4),” then select the Home tab, Format, Format Cells,
Custom, and enter “dddd” to format the cell as the day name. Select B5 through H5
and press Ctrl+R.

• In A7, type “Revenue.” In A8, type “=UNIQUE(Table_rawdata[category])” to fill the
next set of cells with the unique category names from the data table. In A16, type
“Total Revenue.”

• In B8, type “=SUMIFS(Table_rawdata[totalprice], Table_rawdata[region], B1,
Table_rawdata[orderdate], B$4, Table_rawdata[category], $A8).” The syntax for the
SUMIFS function is sum_range, criteria_range_1, criteria_range_2, etc. In this case,
we’re summing the totalprice column in Table_rawdata for those rows where the
region column contains the value in B1, the orderdate column contains the value in
row 4 of the current column (note the placement of “$,” which indicates an absolute
reference), and the category column contains the value in column A of the current
row.

• Select cells B8 through H15 and press Ctrl+R and Ctrl+D to fill right and down.

• In B16, put “=SUM(B8:B15),”, then select B16 through H16 and press Ctrl+R.

• To test that the formula works, select a region from the drop-down list in B1. Notice
the cells fill with the sum of the sales for the specified category and date (Figure 20).

Figure 20. The SUMIFS formula sums a range using various selection criteria.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 28 of 37

• Repeat the previous five steps for A18 to A27 but use “Cost” instead of “Revenue”
and “totalcost” instead of “totalprice” in the formula.

• Using similar steps, create sections for profit using a formula of “=B8-B19” and
profit margin using a formula of “=IFERROR(B30/B8,0)” (this displays a 0 for
division by zero errors).

• Format the sheet, using borders, fonts, and numeric cell formats so it looks like
Figure 21.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 29 of 37

Figure 21. The final sheet.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 30 of 37

Conditional formatting

Create a sheet for month and year using similar steps for the Daily sheet. We’ll also create
drop-down lists for month and year using “=UNIQUE(TEXT(Table_rawdata[orderdate],
"mmmm"))” and “=UNIQUE(Table_rawdata[year])” to create Month and Year ranges in the
rawdata sheet. The formula for the data is slightly more complicated because we need to
take the selected month (cell B2) and year (B2) into account:

=SUMIFS(Table_rawdata[totalprice], Table_rawdata[region], B1, Table_rawdata[month],
B$5, Table_rawdata[year], B$7, Table_rawdata[category], $A10)

Let’s add conditional formatting to the profit margin. Click in B43, select the Home tab, click
Conditional Formatting, New Rule. In the New Formatting Rule dialog, choose Icon Sets for
Format Style, choose the third icon set (flags) for Icon Style, then set the rest of the settings
as shown in Figure 22 (Icon Style will automatically change to “Custom”).

Figure 22. Conditional formatting rules allow you to flag cells containing values outside desired ranges.

When the profit margin is greater than 60%, we’ll display a yellow flag. When it’s between
35 and 60%, we’ll display no symbol. When it’s less than 35%, we’ll display a red flag. See
Figure 23.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 31 of 37

Figure 23. The conditional formatting flags profit margins that are too high or too low.

Mapping

Excel supports mapping geographical data. Let’s create a map showing sales by country.

• Create a new worksheet and rename it to Map.

• Type “Country” in U1 and “Sales” in V1.

• Put this formula into U2: “=SORT(UNIQUE(Table_rawdata[country]))”

• Put this formula into V2: “=SUMIFS(Table_rawdata[totalprice],
Table_rawdata[country], $U2)”. Fill this formula down to the bottom of the
countries list in column U.

• Select U1 through V22 and select Maps, Filled Maps from the Insert tab.

• Drag the resulting map to the upper left corner of the sheet and enlarge it.

• Enter “Sales by Country” for the map title.

The result is shown in Figure 24.

Figure 24. You can create a map in Excel with just a few mouse clicks.

If you want to get even fancier, you can create a 3-D map and make a video from it (Figure
25).

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 32 of 37

Figure 25. You can even create a 3-D map.

Making the path for the data relative

If you send the spreadsheet and XML file to someone else, they’ll likely get an error when
they open the spreadsheet or try to refresh it. The reason is that the path for the XML file is
absolute and it’s unlikely they put the files into the same drive and folder as you did. Let’s
make the spreadsheet use a relative path for the XML file:

• On the rawdata sheet, put this into an empty cell: “=LEFT(CELL("filename", A1),
FIND("[",CELL("filename", A1), 1) - 1).” This formula returns the folder the
spreadsheet is in and we’ll use that same folder for the XML file.

• Name that cell “FilePath” by clicking the Name Box and entering “FilePath.”

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 33 of 37

• On the Data tab, choose Queries and Connections, then double-click “rawdata” in the
Queries and Connection panel to open Power Query Editor.

• Click Advanced Editor in the Home tab (Figure 26).

• Add this after the first line (“let”) to create a variable named Path containing the
content of the FilePath cell:

 Path = Excel.CurrentWorkbook(){[Name="FilePath"]}[Content]{0}[Column1],

• Change the Source statement to use the Path variable rather than a hard-coded path:

 Source = Xml.Tables(File.Contents(Path & "sales.xml")),

• Click Close & Load.

Figure 26. The Power Query Advanced Editor.

(Thanks to https://excel.tv/how-to-create-a-relative-file-path-in-power-query for this.)

Auto-refreshing

After generating the XML file, the user has to manually open the Excel document and
refresh the data. You can automate that using the following code (substitute “Sales.xlsx”
with the appropriate name):

https://excel.tv/how-to-create-a-relative-file-path-in-power-query

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 34 of 37

try
 loExcel = createobject('Excel.Application')
 loDocument = loExcel.Workbooks.Open(fullpath('Sales.xlsx'))
 loExcel.Sheets('rawdata').Select()
 loExcel.Range('A1').Select()
 loExcel.Selection.ListObject.QueryTable.Refresh(.F.)
 loExcel.DisplayAlerts = .F.
 loDocument.Save()
 loExcel.Visible = .T.
catch
 if vartype(loExcel) = 'O'
 loExcel.Quit()
 endif vartype(loExcel) = 'O'
endtry

Other useful Excel features
Here are some other Excel features useful for reporting purposes.

XLOOKUP

XLOOKUP is a new function that can be a replacement for the older VLOOKUP and
HLOOKUP functions. XLOOKUP finds a value in an array (table or range) and returns an
array for the match. In VFP terms, it’s like doing a SEEK or LOCATE in a table to find a
record and then returning one or more values from that record.

DATEDIF

DATEDIF determines the number of days, months, or years between two dates.

WORKDAY

WORKDAY returns a date the specified number of workdays (excluding weekends) before
or after the specified date. You can optionally specify an array of holidays to exclude.

Sparklines

A sparkline (Figure 27) is like a miniature graph in a single cell. Select a range, choose the
type of sparkline you want from the Insert tab, and specify the cell the sparkline should go
in.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 35 of 37

Figure 27. Sparklines are a miniature graph in a single cell.

Custom lists

If you have to enter a series of values, such as day or month names, regions, divisions,
product names, and so on, use the custom list feature in Excel. There are already custom
lists for day and month names (full and abbreviated), but you can also create your own.

To use a custom list, enter the first value in a cell. Click the small square in the bottom right
corner of the selection rectangle surrounding the cell and drag down or right. As you do, a
tooltip will show you the value to be inserted into the current cell (Figure 28). Release the
mouse button to fill the cells.

Figure 28. Custom lists make entry of a series of pre-defined values easy.

To create your own custom list, choose File, Options, Advanced, and in the General section,
click the Edit Custom Lists button.

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 36 of 37

Summary
Most modern applications should provide a way to export to Excel. As we’ve seen in this
document, it’s easy to do. Plus, rather than just creating a boring list of data, with a little
effort, you can create attractive and easy-to-use Excel documents the users are happy to
work with. Using a template-based approach, you can even get them to do most of the
work!

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Query; the award-winning Stonefield Database Toolkit (SDT) (now
open source); the MemberData Editor, Anchor Editor, and CursorAdapter and
DataEnvironment builders that come with Microsoft Visual FoxPro; and the My
namespace and updated Upsizing Wizard in Sedna. He also created several VFPX projects,
including Project Explorer, OOP Menu, OOP Reports, and SFMail.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, Visual FoxPro Best Practices For The Next Ten Years, the What's New in
Visual FoxPro series, and Hacker's Guide to Visual FoxPro 7.0 (now open source). He was the
technical editor of Hacker's Guide to Visual FoxPro 6.0 and The Fundamentals. Doug wrote
hundreds of articles in 20 years for FoxRockX, FoxTalk, FoxPro Advisor, Advisor Guide to
Visual FoxPro, and CoDe magazines.

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the Southwest Fox and Virtual Fox Fest conferences. He is one of the
administrators for the VFPX VFP community extensions Web site. He was a Microsoft Most
Valuable Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award.

https://stonefieldquery.com/
https://github.com/DougHennig/StonefieldDatabaseToolkit
https://github.com/VFPX/MemberDataEditor
https://github.com/VFPX/Wizards
https://github.com/VFPX/Wizards
https://github.com/VFPX/Wizards
https://github.com/VFPX/My
https://github.com/VFPX/My
https://github.com/VFPX/UpsizingWizard
https://github.com/DougHennig/ProjectExplorer
https://github.com/VFPX/OOPMenu
https://github.com/VFPX/OOPReports
https://github.com/DougHennig/SFMail
http://foxrockx.com/GetVFPX.htm
http://hentzenwerke.com/catalog/vfpbp10.htm
http://hentzenwerke.com/catalog/wnvfp9.htm
http://hentzenwerke.com/catalog/wnvfp9.htm
https://hackfox.github.io/
http://hentzenwerke.com/catalog/hackfox6.htm
http://hentzenwerke.com/catalog/fund6.htm
http://www.foxrockx.com/
http://www.swfox.net/
https://virtualfoxfest.com/
http://vfpx.org/
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~Wiki
http://fox.wikis.com/wc.dll?Wiki~FoxProCommunityLifetimeAchievementAward~Wiki

Advanced Reporting with Microsoft Excel

Copyright 2023, Doug Hennig Page 37 of 37

http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Creating Excel documents
	COPY TO
	CSVProcessor
	GridExtras
	XFRX
	ReportListener
	XFRX_CopyToXLSX

	Excel automation
	WorkbookXLSX

	Template-based reporting
	Generate the data file
	Creating the template
	Presenting the data
	Custom presentation
	Conditional formatting
	Mapping
	Making the path for the data relative
	Auto-refreshing

	Other useful Excel features
	XLOOKUP
	DATEDIF
	WORKDAY
	Sparklines
	Custom lists

	Summary
	Biography

