
Lessons Learned in Version
Control

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

Rick Borup’s sessions at previous Southwest Fox conferences really helped me get started
using version control for my application development. Since then, I’ve made a ton of mistakes
and learned a lot of lessons the hard way. This document discusses what has evolved into my
team’s best practices for version control. It’s intended for those who are familiar with version
control but are looking for ideas about how to improve their processes.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 2 of 24

Introduction
Before Rick Borup’s “VFP Version Control with Mercurial” session at Southwest Fox 2011,
I’d heard all the arguments for using version control but hadn’t adopted it. My thinking was
that I’m the only one working on my projects so I don’t need version control. Rick’s session
convinced me I was wrong. I implemented Mercurial shortly after, with tremendous help
from Rick’s white paper, and haven’t looked back. I now use version control for more than
just application development. For example, the tables Tamar, Rick, and I use to manage
speakers, topics, and scheduling for Southwest Fox and Southwest Xbase++ are in version
control.

I’m not going to try to sell you on using version control. I’m also not going to provide an
introduction to version control in general or certain version control tools in particular; I
assume you’ve already been using version control or at least have enough familiarity with
it to follow along. What this document is about is discussing the processes my team at
Stonefield Software use and some of the traps we’ve run into along the way. I don’t claim
that these are best practices for everyone; they’re processes that work for us. Feel free to
adopt and adapt them as you see fit.

The examples discussed in this document use Mercurial but the concepts are almost
identical in other distributed version control systems (DVCS) like Git.

Getting started
I’ve started a new application that both I and my wife Peggy will be working on (she’s not
actually a software developer; I just wanted to use her name in my examples). So far, the
application just consists of a main PRG that runs a form, which just has a single button so
far. The form and its controls are instances of classes in my base class library, which is in a
folder outside the project folder structure called Framework.

The first step is to put the source for the application into version control (actually, the first
step is to install a version control system on both machines, but I assume that’s already
done). Right-click the project folder, choose TortoiseHG, and select Create Repository Here
(Figure 1). You can just accept the defaults in the dialog that appears and click the Create
button. You’ll see a new .hg folder and new .hgignore file created, and the project folder has
a green checkmark indicating both that it’s under version control and that there are no
changes (in this case, because we haven’t added anything to the repository yet).

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 3 of 24

Figure 1. Creating a repository.

Right-click the folder again and choose Hg Commit. Select all files by clicking the checkbox
at the top, enter a commit message (it’s traditional to use “Initial commit” for the first one),
and click the Commit button (Figure 2). Click the Add button when asked if you want to
add selected untracked files. All project files now display a green checkmark.

Figure 2. The initial commit for the application.

Next we need to clone our local repository to a central one where other developers can
access it. For now, we’ll do this on a server but later we’ll use a cloud site. Create a folder on
the server, right-click it, choose TortoiseHg, and select Clone (Figure 3). Click the Browse
button for Source and select the application folder, then click Clone.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 4 of 24

Figure 3. Cloning a repository on the server.

Finally, to create a copy on Peggy’s machine, repeat the steps to clone the repository on the
server but use the server repository as the source.

Let’s see if everything worked. Open the MyApp project on Peggy’s machine. Oops, we’re
getting a warning that SFCtrls.vcx can’t be found. That makes sense: the repository only
contains files from the MyApplication folder, not from Framework, so when we cloned the
repository on the server and on Peggy’s machine, the files in Framework weren’t included.

That brings up the first topic: how we deal with common components.

Handling common components
Rarely do you start an application completely from scratch. Typically, you use a framework
of some type, whether it’s a commercial product such as Visual FoxExpress or Visual
MaxFrame or a home-grown version like I use. You probably use other components too,
again either commercial products, such as West Wind Client Tools or Stonefield Database
Toolkit, or open source, such as VFPX projects or FoxyPreviewer.

Usually, rather than having separate copies of these components for every application,
developers install these components in directories on their machines and then reference
the components from those folders in their projects. That’s what I did with MainForm.scx:
it’s a subclass of SFFormTLF in SFCtrls.vcx, located not in the project folder hierarchy but in
a folder called Framework that’s referenced by all projects.

The problem with that approach is it prevents you from including those common
components used by a project in the project’s repository: all the files in a repository must
exist in the repository’s folder hierarchy. There are a few solutions to this:

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 5 of 24

 Install the common components on each machine.

 Have copies of the component files in each project folder.

 Have a repository at a level that includes both the project and the common
components folders.

 Have separate repositories for your project and common components.

Let’s look at each of these options in more detail.

Install common components on each machine

For common components that weren’t created in-house (commercial or open source), you
could argue that you don’t need to include those files in any repository. Instead, just install
them on each developer’s system. Of course, you need to ensure the same relative folder
structure is used on each machine or you’ll have issues with components not being found
even though they’re installed.

The pros of this approach are:

 It’s straightforward: your team simply has to worry about source code under your
control, not that created by other developers.

 The repository is small since it doesn’t contain anything outside the project-specific
files.

The cons for this approach are:

 It doesn’t help with common components that were created in-house.

 It’s more work setting up a new machine: instead of just cloning a repository, you
have to install numerous other components the project depends on.

 There could be version problems. For example, if one developer upgrades to a new
version of a component but the others don’t, the application may not run properly.
Everyone has to keep all components in sync with each other.

Copies of the component files in each project folder

In each project’s folder structure, include one or more folders containing the common
components. You could dump them all into a single folder, even the same folder as your
project files, but that would be messy and difficult to manage. A better solution is to
duplicate the folder structure you normally keep the components in within the project’s
folder hierarchy. For example, suppose you have a folder structure like shown in Figure 4.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 6 of 24

Figure 4. A folder structure with two projects and common components.

In that case, your project folder structure would look like Figure 5 (Source is the folder
containing the project-specific files). Note that Application 1 and Application 2 are under
version control but Common Files is not (although it could be if desired).

Figure 5. Copies of common components go in each project’s folder hierarchy.

(Of course, rather than having the folder for each component in the root of the project
folder, you could have them under a Common Files folder.)

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 7 of 24

The project-specific code references the copies of the common components from within the
project hierarchy rather than from the main Common Files folders and those files are
included in the repository for each project.

The pros for this approach are:

 Each project stands alone with no references to anything outside the project’s folder
hierarchy.

 Cloning the repository is easy since it’s self-contained.

 Setting up a new project is easy: simply copy the folders within Common Files the
project uses into the same named subdirectories of the project folder.

 The project is insulated from changes to common components that may break the
application. For example, maybe an update to a West Wind component means
changing code that calls the component. Unless you upgrade a project’s copy of the
West Wind file, there’s no need to do anything.

The cons for this approach are:

 It takes more disk space to have multiple copies. Of course, disk space is cheap and
plentiful these days so this isn’t much of an issue.

 Managing changes to common components is more work: you have to install
updates or make changes in each of the folders where the components were copied.

 If you already have a project with the hierarchy shown in Figure 4, this is difficult to
implement because all references to the common components have to change. In the
case of classes and forms, this means hacking VCX and SCX files to change the path
to the parent classes. For other types of code, such as PRGs, it means changing the
path to the files (if you’re lucky, as simple as changing a SET PATH statement).

Repository in parent of both project and common components folders

Assuming the folder structure shown in Figure 4, the repository would go at the root of the
drive. In that case, there’s only one copy of each common component file and the project-
specific files reference the common component files in their original folders. Figure 6
shows what the folder hierarchy looks like. Notice the .hg folder is in the root and all
subdirectories are included in the repository.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 8 of 24

Figure 6. There’s a single repository in the parent of both project and common components folders.

The pros for this approach are:

 You don’t have to change anything if you’re putting an existing project under
version control.

 Cloning the repository is easy since it contains everything a developer would need.

 There’s only one copy of each common component file, so there are no issues
related to disk space or updates.

The con for this approach is that since the repository is in the parent of both project and
common components folders, you can only have one repository that includes the common
components. That means if you have multiple projects, they’re all in one big repository.
Although there’s nothing strictly wrong with that, I don’t think anyone would argue that it’s
a best practice. This really only works best when you have a single application, such as if
you have a single vertical market application and that’s all you do.

Separate repositories for projects and common components

As you can see in Figure 7, there are separate repositories for each project and for
common components. In this case, there’s a single repository for all common components
but there could be one for each component or combinations thereof.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 9 of 24

Figure 7. Projects and common components have their own repositories.

The pros for this approach are:

 You don’t have to change anything if you’re putting an existing project under
version control.

 There’s only one copy of each common component file, so there are no issues
related to disk space or updates.

The con for this approach is a minor one: cloning and keeping a project current is a little
more work because there are multiple repositories involved. However, you can automate
that by creating batch files or PowerShell scripts that use command line arguments for
your version control software to do whatever is necessary. For example, the following
commands pull any changes made to the Framework repository (which presumably
contains all common framework components) on the server and updates the working
directory with those changes:

cd \Development\Framework
hg pull \\MyServer\Framework
hg update

For our development, Peggy and I decide to go with the fourth approach, so I create a
repository for the Framework folder, commit the files to it, and clone it on the server, and
Peggy clones it. Peggy can now open, build, and run the project with no changes.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 10 of 24

Dealing with VFP binary files
Now that we have version control set up, we’re ready to start working on the application.
We need to add buttons to the form and code in the Click method of those buttons.
However, if we both work on the same form, we’ll have a big issue: how to consolidate our
changes?

As I’m sure you’re aware, some VFP files are actually tables: VCX, SCX, PJX, MNX, FRX, LBX,
and DBC (along with their accompanying memo files). Since VFP tables are binary files,
they can’t be compared to each other using traditional “diff” tools. As a result, you can’t
compare changes in two copies of a file, nor can you merge changes.

Fortunately, there are several tools available that convert VFP binary files to text files that
can be compared and merged. The latest one is FoxBin2Prg, a VFPX project. There’s even an
extension for it, Bin 2 Text Extension, also a VFPX project, which adds support for Git and
IDE integration.

Installing FoxBin2Prg is easy: simply download it from VFPX (http://vfpx.codeplex.com)
and install it in any folder. If you use Thor (the most important add-on there is for VFP and
also a VFPX project), it’s even easier: from the Thor menu, choose Check for Updates, turn
on FoxBin2Prg in the dialog that appears, and click Install Updates. I’m going to assume
you’re using Thor for the purposes of this document. If not, see the FoxBin2Prg
documentation for instructions on how to use it.

To create text versions of all of the binary files in a project, choose Thor Tools, Applications,
FoxBin2Prg, Projects, Convert All Binary Files to Text Files from the VFP system menu. This
function creates text files from the binary files, using the same file name as the binary files
but with “2” replacing the final “x” in the extension (for example, MyApp.pj2 for the text
version of the PJX file). A similar function does the opposite: generating binary files from
the text files.

To make it easier to access the functions, you can create a Thor hotkey for
that using the Thor Configuration dialog.

I create a little Thor tool that both creates text versions of all binary files in a project and
brings up the TortoiseHg Commit dialog, saving a few mouse clicks. I assigned a hotkey of
Alt-3 to the tool so when I’m ready to commit changes in the application, I simply hit Alt-3,
enter a comment, and click Commit. Creating a Thor tool is beyond the scope of this
document, but all it really does is:

do (_screen.cThorFolder + ;
 'Tools\Thor_Tool_Repository_FoxBin2PrgConvertProjectToText.prg')
run /n0 thg commit

http://vfpx.codeplex.com/

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 11 of 24

Thor_Tool_Repository_FoxBin2PrgConvertProjectToText.prg is the Thor tool FoxBin2PRG
installs to convert the binary files in a project to text files.

To add my tool to Thor, simply copy Thor_Tool_Convert2PRGAndCommit.prg (included in
the downloads for this document) to the Thor\Tools\My Tools folder of wherever you have
Thor installed. Choose Configure from the Thor menu and assign a hotkey to this tool if you
wish.

It’s important to generate text files for the binaries in the project, add them
to version control, push them to the central repository, and pull them into
all developers’ repositories only when all other changes have been
synchronized in all repositories. Otherwise, merging the changes can be a
mess.

To see this in action, I generate text files for the binaries in the project, add them to the
repository, and push to the server; Peggy pulls from the server and updates so she has the
latest version. Then I modify the code in the Click method of the existing button in the form
while Peggy adds another button to the same form. I commit and push, then she commits,
pulls, and merges with her local changes. Because we both made changes in the same form,
there are several merge conflicts that need to be resolved (Figure 8). Tool Resolve handles
the differences in MainForm.sc2 but it can’t resolve the differences in MainForm.scx and sct
because they’re binary files. In this case, it doesn’t matter whether we choose Take Local or
Take Other since we’re going to regenerate the two files from MainForm.sc2 in a moment.

Figure 8. The Resolve Conflicts dialog shows which files have conflicting changes that need to be resolved.

After the update, Peggy uses the hotkey she assigned to generate binary files from the text
files. When she then edits MainForm.scx, she sees both of our changes.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 12 of 24

Always generate binary files from the text files after a version control
update or merge.

One of the things you’ll note is that when I open the project, I’m prompted to change the
home directory. After I push changes and Peggy pulls them, she’s prompted to change the
home directory when she opens the project. This gets a little annoying after a while, so
we’ll see how to resolve this in the next section.

What should go in the repository?
If you look at the list of files added to the repository in Figure 2, you’ll notice I added
everything in the project folder hierarchy, including FXP and EXE files. Is that necessary or
desirable? Not really:

 The larger the repository, the longer it takes to clone, commit, push, pull, etc.

 Even if you don’t change the source code, rebuilding a project may regenerate FXP
and other generated files. As a result, it looks like you have to commit and push and
other developers have to pull and merge even though nothing’s really changed.

The general rule of thumb is that nothing generated should go in the repository. In the case
of a VFP application, that means you should exclude:

 EXE, APP, and DLL files generated by your projects

 FXP, MPX, and QPX compiled program files

 MPR and QPR files since they’re generated from menus and queries, respectively

 ERR, BAK, and TBK files (you probably shouldn’t have any of these anyway )

 Any files generated by running your application (TXT, HTML, XML, MEM, etc.)

Other files require some consideration.

 VFP binary files: assuming you’re using FoxBin2Prg or something similar as
discussed in the previous section, you can exclude the binary files. One benefit of
this is that you’re no longer prompted to change the home directory for the project
when you open it, since you’re recreating it with the current directory when you use
FoxBin2PRG to generate the binary files.

 Data files: it depends: if they’re used but not maintained by the application—for
example, meta data such as Stonefield Database Toolkit’s, lookup data, configuration
settings not maintained by the user, etc.—definitely (don’t forget to include any CDX
or FPT files in addition to the DBF). Otherwise, probably not, or else every time you
add a record to a sample copy of the tables maintained by the application, they’re
marked as changed and have to be committed, pushed, pulled, merged, etc. Database
container files (DBC, DCX, and DCT) should be included unless you use GENDBC to

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 13 of 24

generate a program to recreate the database; in that case, include that generated
program. You might want to use FoxBin2Prg to convert tables and database
containers to text files and include those instead. FoxBin2PRG doesn’t handle data
files automatically; see its documentation for details on how to configure it to do so.

 Images: these should be included but keep in mind that they’re binary files so
changes made by more than one person at a time can’t be merged. Fortunately, most
developers I know get their images from other sources rather than creating them
themselves so this is rarely an issue.

 CHM (help) file: there’s no need to include the CHM file (or CHW file if it exists)
since it can be regenerated from whatever source you used to create it. If you’re
using West Wind HTML Help Builder, you should include the HBP, FPT, and CDX
files for the help source as well as WWHelp.ini and the contents of the BMP, Images,
and Templates folders (you can actually skip the BMP and Templates folders since
they’re created when you create a new help project and don’t change, but I include
them to make it easier to clone the repository). The rest of the files are generated by
Help Builder and so should be excluded. Note that since the HBP file is actually a
VFP table, you might want to use FoxBin2Prg to convert it to a text file and include
the text file instead.

 Testing files: this includes FoxUnit or other test programs, any configuration
settings, and test data. These should be included in the repository. As with the other
points, consider using FoxBin2Prg to create text files from any binary files and
include those instead.

 Documentation: this could be Microsoft Word documents describing the feature set,
Microsoft Excel documents detailing the development plans and costs, and so on.
Note that these are binary files so you won’t be able to merge changes. For that
reason, it’s best if only one person be responsible for editing these files.

 Deployment files: your setup source files (for example, the ISS file if you use Inno
Setup) as well as any other files related to deployment (such as BAT or PowerShell
PS1 files) should be included.

 Visual Studio files: if you’re like me and have some in-house .NET components in
your applications, you should include the source files for those components in the
repository. You can exclude the generated files (those in the BIN and OBJ folders)
and SUO (user preference settings) file.

 hgignore or gitignore file: these files contain information about which files the
version control system should ignore. They should be included in the repository
even though they’re not strictly part of the project.

Ignore file
Speaking of the ignore file, you should use one to tell your version control software not to
list certain files in the commit dialog. Otherwise, it’s difficult to tell which are files you
routinely exclude and which are new but haven’t been added yet. See
https://www.selenic.com/mercurial/hgignore.5.html for a discussion of .hgignore for

https://www.selenic.com/mercurial/hgignore.5.html

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 14 of 24

Mercurial. Listing 1 has the content of a typical .hgignore file for a VFP application (this file
is included with the files accompanying this document). Note that .hgignore is case-
sensitive so file name and extensions are usually listed in multiple cases unless you use
regular expression syntax.

Listing 1. Typical .hgignore file for a VFP application.

use glob syntax.
syntax: glob

VFP generated files
*.err
*.ERR
*.qpr
*.QPR
*.mpr
*.MPR

VFP compiled files
*.fxp
*.FXP
*.mpx
*.MPX
*.qpx
*.QPX

VFP backup files
*.bak
*.BAK
*.tbk
*.TBK

VFP binary files
*.pjx
*.PJX
*.pjt
*.PJT
*.vcx
*.VCX
*.vct
*.VCT
*.scx
*.SCX
*.sct
*.SCT
*.mnx
*.MNX
*.mnt
*.MNT
*.frx
*.FRX
*.frt
*.FRT
*.lbx

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 15 of 24

*.LBX
*.lbt
*.LBT

Misc backup files
*.orig
*.ORIG
*.save
*.SAVE
*.zip
*.ZIP

Other files
*.chw
*.suo
*.docstates

Folders to exclude
bin/*
obj/*

Specific files
*.exe
*.EXE

After setting up the ignore file, remove the files you no longer want under version control
by selecting them, right-clicking, choosing TortoiseHg, and Forget Files, then commit the
changes. Note: one issue you might run into when you do this is that the case of the file
extension somehow changes. For example, I removed “mainform.sct” from the repository
but when I went to commit the change, it failed because “mainform.SCT” wasn’t part of the
repository. To fix this, I reverted the change to the file (which now has an SCT rather than
sct extension), then forgot the file again and committed the change.

Workflow
Here’s the process for development to ensure all developers keep updated with other
developers’ changes (see Figure 9):

 Make changes as necessary.

 Run any tests you have for the project and fix any problems identified by failing
tests.

 Convert the binary files to text files.

 Commit the changes.

 Pull from the central repository to retrieve changes other developers made.

 If anything was retrieved:

o Merge the changes with your local folder and resolve conflicts as necessary.

o Convert the text files to binary files.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 16 of 24

o Repeat all of the above steps.

 Once a pull retrieves nothing from the repository, push to the central repository.

Figure 9. Version control workflow.

When to commit
How often should you commit? The nice thing about DVCS like Mercurial and Git is that
there’s no reason not to commit frequently. My rule of thumb is to commit after every
“change,” even if multiple files are involved (that is, after every atomic change). If you don’t,
reverting can be painful since you may lose other changes you want to keep.

Be sure to use meaningful, detailed comments. I’ve seen comments where the developer
wrote something like “added button.” I can see that from the source code change, so I don’t
need to see that in the comment. Include comments about why the change was made and
steps to reproduce the bug if it’s for a bug fix. If the reason for the change is including in
your issues or bug tracking system, include the ID for the issue (we’ll see an example of
how this is handy later in the “Using a cloud-based repository” section). Not only does this
help the next developer (or even you) understand what the change is all about, you can also
output the commit comments to file so it can be used as documentation.

When to push
You can push after every commit if you wish. We tend not to: we typically push when we
have a small set of features or bugs finished so other developers can test them in a batch,
which can be more efficient than testing after each one (of course, the developer making
the changes tests after each one). We also push if something another developer is going to
work on relies on a change we made, if a customer needs an update for a bug we fixed, or
when we want to create a new build.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 17 of 24

Remember to pull before every push, or you may have more work to do in merging other
people’s changes with yours.

When to branch
Branching is something that made me nervous thinking about until we actually did it. Part
of the reason is the fear of updating to an earlier build and losing the changes you’ve made.
What got me over that fear was frequent commits and learning to trust the repository (“use
the Force, Luke”).

Another part of the reason is because there are many differing ideas about branching,
including:

 In Chapter 8 of “Mercurial: The Definitive Guide” (http://tinyurl.com/d6e8oc),
Bryan O’Sullivan discusses branching and makes a case for each release being its
own repository: “There's a one-to-one relationship between branches you're
working in and directories on your system.”

 In his post at http://tinyurl.com/2vj4uhz, Vincent Driessen proposes a branching
strategy that works well for his projects (Figure 10): separate branches for
“production-ready” (“master,” the Git equivalent of Mercurial’s “default”), latest
development (“develop”), individual features, hotfixes to previous releases, and
releases.

Figure 10. A complex branching strategy.

http://tinyurl.com/d6e8oc
http://tinyurl.com/2vj4uhz

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 18 of 24

 Spencer Christensen discusses several different types of workflows in his post at
http://tinyurl.com/nleeh4c, including one that uses no branching at all.

 Craig Berntson, a well-known former VFP developer, argues that branching is an
anti-pattern and is wasteful, so there should be no branching
(https://speakerdeck.com/craigber/branches-and-merges-are-bears-oh-my).

 Steve Losh (http://tinyurl.com/8yh3n6a) discusses a simple workflow with just two
branches: “default,” where development occurs, and “stable,” where bug fixes for
previous releases go.

The workflow we use at Stonefield Software is similar to Steve’s except we have branches
for each release (Figure 11). In detail, the workflow is:

 All new development is done in the default branch. We never add new features to
previous versions; we only perform bug fixes.

 Once we’ve released a major version, we create a branch named for the version
number. The reason for doing that is to maintain a set of source that’s been
deployed to customers.

 If there’s a bug fix in a particular version, we switch to the branch for that version,
make the changes and commit, and create a new release (or patch) for customers.
Since it’s likely the bug also exists in the current code (unless something unusual
happened such as the code where the bug fix was made is no longer used), we
switch back to the default branch and merge from the version changes.

Figure 11. The workflow we use at Stonefield Software.

http://tinyurl.com/nleeh4c
https://speakerdeck.com/craigber/branches-and-merges-are-bears-oh-my
http://tinyurl.com/8yh3n6a

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 19 of 24

Always merge from an earlier version’s branch into the default branch. The
first time I did this, I merged the other way around and inadvertently added
the new features we’d added in the new version to the old version.

The reason we use this workflow is the same one Steve outlines: most changes, and
therefore commits, are done in the default branch, so it’s easier on developers than having
to constantly switch branches. It’s a simplistic workflow that works for us.

To create a branch, do a commit (even if there are no changes) and click the Branch button
(see Figure 12). Select Open a new named branch and enter the name for the branch. After
clicking OK, enter a comment, such as “Created Version1.0 branch,” and click the Commit
button. This not only creates a new branch, it makes it the current branch. You may wish to
switch back to the default branch, where new development occurs, by selecting the last
revision from that branch and updating to it. Forgetting to do that means that you may
inadvertently make new changes in the wrong branch; I’ll discuss how to fix that situation
later. Figure 13 shows how TortoiseHg Workbench appears after creating a Version1.0
branch and switching back to the default branch (notice the Working Directory uses the
default branch). Notice that the graph shows the Version1.0 branch in Rev. 7 diverges from
the default branch. That’ll be the case from now on.

Figure 12. Create a new branch by clicking the Branch button in the Commit dialog.

Figure 13. After creating a Version1.0 branch and switching back to the default branch.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 20 of 24

Fixing problems
There are lots of different kinds of problems you can run into with version control. Here
are some of the ones I’ve encountered and the solutions to them.

Undoing a change

You make a change to a program, save it, and then realize you made a mess and want to go
back to the way the file was before. Or maybe you were experimenting with a change and
found that the experiment didn’t work. If the change was to a VFP binary file such as a form
and you haven’t generated the text file from it yet, the fix is easy: regenerate the binary
from the text file to put it back the way it was. If you did generate the text file or the change
was to a PRG or other non-binary file, Revert is your friend: right-click the file and choose
Revert Files from the TortoiseHg menu, or use the hg revert command. This restores the
file to its committed version (yet another reason to commit often). Remember that if it’s a
VFP binary file, you actually revert the text version of the file so you have to regenerate the
binary file.

If you committed the change, you can revert to a previous revision or rollback the commit.

Always commit before starting new work. Otherwise, if you have to revert,
you’ll lose more than just the new changes you made.

Committing to the wrong branch

You’re working away in the default branch, working on a new version of the application.
Then a user reports a bug. You run the application, reproduce the bug, track it down in the
source code, and fix it. Then you realize you fixed the bug in the default branch, not the
Version1.0 branch the application the customer is working with is built from. You have a
few choices:

 If you haven’t committed yet, you can apply the same changes in the desired branch
using these commands:

 hg diff --git > mypatch
 hg update --clean Version1.0
 hg import --no-commit mypatch

(Replace “Version1.0” with the name of the desired branch.)

 If the change is simple (say a change in one line of code), the easiest thing to do is to
back out the change (right-click the revision in Tortoise Workbench and choose
Backout), switch to the correct branch, redo the change, commit, switch to the
default branch, and merge with the change to fix the bug in both versions.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 21 of 24

 When the situation is more messy, such as when I have some uncommitted new
features plus the bug fix, I’ve resolved the problem using a mechanism that sort of
feels like cheating from a version control perspective: making a copy of the source
file the bug fix is in, committing the changes so I don’t lose them in the current
branch (you could also shelve the changes and then later unshelve them), updating
to the desired branch, opening both the current source file and the copy I made, and
manually copy and paste the changes from the copy into the current file.

Multiple developers changing multiple branches

The first time another member of my team and I both made changes to more than one
branch and merged them together, I was surprised at what we had to do to make
everything work.

Here’s a simplified version of this scenario: I make a change in the Version1.0 branch and
merge the changes with the default branch. Peggy does the same thing (a different change,
obviously). I push my changes and Peggy does a pull.

Figure 14 shows the situation we’re in. Her change was in Rev. 12 and mine was in Rev. 16.
After pulling and merging my Rev. 17 (which merges my Version1.0 change with the
default branch) with her working directory (which contains her Rev. 13, which merges her
Version1.0 change with the default branch), the default branch has both sets of changes.
However, you can see that her Version1.0 branch (Rev. 12) has her change and my
Version1.0 branch (Rev. 16) has my change. If she wants to fix another bug in Version1.0,
she can’t update to Rev. 16 because it doesn’t have her changes and she can’t update to Rev.
12 because it doesn’t have my change.

Figure 14. Two developers made independent changes in the Version1.0 branch which must be merged.

To fix this, we need to merge the Version1.0 branches as well as the default branches. She
updates to her last Version1.0 revision (Rev. 12) then merges my last Version1.0 revision
(rev. 16).

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 22 of 24

Using a cloud-based repository
If all of your developers always have access to a file server on your network, you can use
that as the location for your common repository. However, that doesn’t work as well when
you need remote access to the repository, such as when you’re on the road or if you have a
developer who works remotely. In that case, using one of the cloud-based repositories,
such as GitHub or BitBucket, is a better solution.

We use BitBucket because it was more popular with Mercurial users when we started using
Mercurial five years ago (BitBucket also works with Git). Some developers have told me
that GitHub is better, but BitBucket has all the features we need (and then some) so we
have no reason to switch. So, I’ll discuss BitBucket but GitHub is a fine choice and works in
a similar manner.

To start with BitBucket, create an account at BitBucket.org. BitBucket is free for up to five
users; for larger teams, it’s currently $1 US per user per month. After logging in, you can
create a repository by choosing Create Repository from the Repositories menu (see Figure
15). Fill in the settings (click Advanced Settings to see the full set) and click Create
Repository.

Figure 15. Creating a BitBucket repository.

To push an existing repository to it, click the “I have an existing project link” in the
repository’s control panel page, shown in Figure 16. The page shows the commands to
push the repository or you can use Tortoise Workbench to do it visually:

 Copy the URL displayed in the page, edit the hgrc file in the .hg folder using a text
editor, and paste the URL into the default setting in the [paths] section.
Alternatively, right-click the project folder, choose Synchronize from the TortoiseHg
submenu, and paste the URL in as the default path.

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 23 of 24

 Push the repository. The files in the project then appear in the Source page of the
repository in BitBucket.

After creating the repository, you can invite other team members to access it by clicking the
Send Invitation button in the Overview page (they need to have BitBucket accounts as
well). You can also control access to the repository on the Access Management page under
Settings.

A couple of nice features BitBucket provides are a wiki and issue tracking. The wiki can be
used for anything you wish, such as documentation or wish list items from customers (if
you give them access to it). Issue tracking is really helpful; we use it to track bugs and to-do
items. You can automatically close an issue if you use a comment that includes the issue
number when you commit (such as “Resolves issue #75”).

Figure 16. The repository control panel.

Summary
Version control is an essential part of every developer’s toolkit. I hope you found some
useful tidbits of information in this document. Feel free to adopt and adapt the processes I
described to fit your needs.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that

Lessons Learned in Version Control

Copyright 2016, Doug Hennig Page 24 of 24

come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For The
Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical editor of
The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books are from
Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100 articles in
10 years for FoxTalk and has written numerous articles in FoxPro Advisor, Advisor Guide
to Visual FoxPro, and CoDe. He currently writes for FoxRockX (http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h
http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Getting started
	Handling common components
	Install common components on each machine
	Copies of the component files in each project folder
	Repository in parent of both project and common components folders
	Separate repositories for projects and common components

	Dealing with VFP binary files
	What should go in the repository?
	Ignore file
	Workflow
	When to commit
	When to push
	When to branch
	Fixing problems
	Undoing a change
	Committing to the wrong branch
	Multiple developers changing multiple branches

	Using a cloud-based repository
	Summary
	Biography

