
Introducing Project Explorer

Doug Hennig
Stonefield Software Inc.

Email: dhennig@stonefield.com
Corporate Web sites: www.stonefieldquery.com

www.stonefieldsoftware.com
Personal Web site : www.DougHennig.com

Blog: DougHennig.BlogSpot.com
Twitter: DougHennig

The Project Manager is one of the oldest tools built into VFP, and it has showed its age for a
long time. For example, it doesn’t provide integration with modern distributed version control
systems (DVCS) such as Mercurial and Git, it doesn’t have a way to filter or organize the list of
items, and it can only work with one project at a time.

Project Explorer is a VFPX project that replaces the Project Manager with a modern interface
and modern capabilities. It has most of the features of the Project Manager but adds
integration with DVCS (including built-in support for FoxBin2PRG and optional auto-commit
after changes), support for multiple projects within a “solution,” allows you to organize your
items by keyword or other criteria, and has support for easy “auto-registering” addins that
can customize the appearance and behavior of the tool.

This document introduces Project Explorer and shows how it can make you more productive
than working with the Project Manager. It starts by going through the interface and
functionality of Project Explorer, then looks at its internals to see how it’s designed, and
finally shows how to write addins that extend the functionality or customize the user
interface.

mailto:dhennig@stonefield.com
http://www.stonefieldquery.com/
file:///D:/Development/Writing/Sessions/DeployingVFPApps/www.stonefieldsoftware.com
http://www.doughennig.com/
http://doughennig.blogspot.com/
http://www.twitter.com/DougHennig

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 2 of 46

Introduction
I’ve wanted a replacement for the VFP Project Manager for a long time. There are many
shortcomings to the Project Manager. Here are just a few:

¶ It doesn’t have a way to filter or organize the list of items. Some of my projects are
quite large. For example, SFQuery.pjx, the main project for Stonefield Query, has
1,335 items in it, most of which are classes. It takes a lot of scrolling to find the
specific item I’m looking for. What would be nice would be a way to just display the
five items I worked on today, or just see code specific to this project (that is, exclude
framework classes, which I rarely look at), or just see items that for one reason or
another seem to change frequently.

¶ It can only work with one project at a time. Stonefield Query consists of more than
ten separate projects. It would be nice to be able to build them all with one mouse
click rather than having to open a project, click Build, click OK, click Save, close the
project, and repeat for the next project (in actuality, I have a BuildProjects.prg that
programmatically builds all of the projects, but you get the point). Visual Studio has
the concept of a solution, which consists of one or more projects that you can build
one at a time or all at once.

¶ VFP was written back when SourceSafe and Vault were the big names in version
control. Today, most developers use distributed version control systems (DVCS)
such as Mercurial and Git. Unfortunately, VFP’s source code control doesn’t support
DVCS so you end up either managing source code outside VFP (using the command
line, Tortoise, or some other tool) or using tools such as Lutz Scheffler’s Bin 2 Text
Extension (https://github.com/lscheffler/bin2text) or Mike Potjer’s VFP Git Utils (0
https://github.com/mikepotjer/vfp-git-utils) to provide integration inside VFP.

After thinking about this for many years, I decided that 2017 was the year when I finally
did something about this. Project Explorer is the result.

Project Explorer sort of replaces the VFP Project Manager. I say “sort of” because behind
the scenes, PJX files are still used and are still opened in the Project Manager, except the
Project Manager window isn’t visible; instead, you work in the Project Explorer window
(Figure 4). Project Explorer overcomes the shortcomings I listed above and others as well,
and provides a more modern user interface.

Installing Project Explorer
Project Explorer is a VFPX project; its repository is located at https://github.com/
DougHennig/ProjectExplorer. To install Project Explorer, do one of the following:

¶ If you use Git, create a folder on your system where you want Project Explorer to go,
right-click that folder, and choose Git Clone. Specify https://github.com/
DougHennig/ProjectExplorer as the URL to clone from.

https://github.com/lscheffler/bin2text
https://github.com/mikepotjer/vfp-git-utils
https://github.com/DougHennig/ProjectExplorer
https://github.com/DougHennig/ProjectExplorer
https://github.com/DougHennig/ProjectExplorer
https://github.com/DougHennig/ProjectExplorer

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 3 of 46

¶ To download as a ZIP file, navigate your browser to https://github.com/
DougHennig/ProjectExplorer, click the Clone or download button (Figure 1), and
choose Download ZIP. Unzip the downloaded file in any folder you wish.

Figure 1. You can download Project Explorer from GitHub.

¶ You can use the Thor Check for Updates function to download Project Explorer; see
Figure 2.

Figure 2. You can download Project Explorer using Thor.

A tour of Project Explorer
There are a couple of ways you can open a project in Project Explorer:

https://github.com/DougHennig/ProjectExplorer
https://github.com/DougHennig/ProjectExplorer

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 4 of 46

¶ Run ProjectExplorer.app. If a solution file (more about that in a moment) exists in
the current folder, it’s opened automatically. Otherwise, it displays a dialog
prompting you to select a solution or a PJX file.

¶ Pass ProjectExplorer.app a path to a PJX file, a solution file, or a project object (that
is, something like _VFP.ActiveProject). If you pass “?,” it’ll display a message showing
the parameters you can pass it.

You can, of course, launch Project Explorer from a Thor menu item or hotkey. This is
discussed later in this document.

You’ll notice the first difference about Project Explorer when you run it without a
parameter: it prompts you to open a solution or optionally a project (Figure 3). A solution
is a set of projects that are managed together. For example, Stonefield Query consists of
more than ten separate projects, each of which creates an EXE. By putting them into a
solution, I can build all of the EXEs at once or just one if I want.

Figure 3. You are prompted to open a solution or a project.

Project Explorer works with PJX files just like the Project Manager does. It also creates a
solution file named Solution.xml in the project folder. The solution file simply contains the
list of projects and a few settings. We’ll look at the structure of the solution file later.

The first time you open a project with Project Explorer, it takes a moment or two as it
builds the meta data for the items in the project. Subsequent startups are much quicker.

The next difference you’ll notice is the user interface (Figure 4). Project Explorer is similar
to the Project Manager in that it displays a TreeView list of items in the project but there
are several other differences that are immediately apparent:

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 5 of 46

Figure 4. The user interface for Project Explorer is more modern than the Project Manager.

¶ The interface is more modern, with colorful picture buttons instead of text buttons.

¶ It’s also more compact: the buttons are at the top in a toolbar rather than at the side,
there are no tabs, and the information area at the bottom is gone. As a result, for a
similarly sized window, you can see a lot more items in Project Explorer.

¶ Speaking of tabs, the equivalent mechanism to select a different set of files is with a
combo box. Not only does it take up less space, it’s also data-driven so it can
organize items into more categories than just Data, Documents, Classes, Code, and
Other. We’ll discuss this in more detail later. A minor downside is that it takes two
mouse clicks (the down arrow and then the desired choice from the combo box)
rather than the one it takes with tabs.

¶ The associated menu (click the “hamburger” button at the left of the toolbar) is in
the window rather than in the VFP system menu so the window is self-contained.

¶ Because the window has the Desktop property set to .T., the window can be dragged
outside the VFP window, such as onto another monitor, giving you more workspace
in the VFP window. This can be turned off in the Options dialog if you want the
window to live inside the VFP window.

¶ The solution open in Figure 4 consists of two projects: Demo1.pjx and Demo2.pjx in
D:\Project Explorer Demo. The folder is shown in the window title bar (something

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 6 of 46

you can’t see in the Project Manager) and the contents of both projects are shown in
the TreeView.

¶ The TreeView uses the same icons as the Project Manager does for file types,
including Ø for excluded files, with a one exception: as you can see in Figure 5,
when a solution is under version control, the icon for a file displays its status rather
than type. The two projects and the first database named Test appear as , meaning
they are “clean” or unmodified but the second Test database (although they’re in
different folders, I named them both Test to show Project Explorer would work with
duplicate names) appears as because it’s been modified and not yet committed.

Figure 5. The icon for a file shows its version control status.

Item properties

What if I want to see the path or description of a file? To do that, click the Expand button in
the toolbar () to show the full window, shown in Figure 6 (the Expand button icon
changes to ; clicking it again collapses the window). Project Explorer displays a lot more
properties of the selected item than just path and description:

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 7 of 46

Figure 6. The full Project Explorer window shows all the properties for the selected item.

¶ Name: the name of the item. To rename an item, enter a new name. Project Explorer
won’t let you enter an invalid name and gives a warning if it’s a duplicate name
when you try to save. Not all item types can be renamed: to rename a field or index,
use the Table or View Designer; to rename a stored procedure, edit the stored
procedures; and a database can’t be renamed because the backlink to the DBC in the
DBF header of every table in the database has to be updated. (You can’t rename a
database in the Project Manager either; it looks like you can but when you click OK,
you get a message that the database is open.)

¶ Path: the path for the item. In the case of a field or index, it’s the path for the table or
the name of the view. For views, connections, and stored procedures, it’s the path
for the database. For a class, it’s the path for the VCX. For all other types, it’s the path
for the file. This is always read-only. Click the link to open a File Explorer window
for the folder the item is in.

¶ Last Modified : the date the item was last modified. This isn’t maintained for all item
types so in those cases it’s blank. This is always read-only.

¶ Exclude: turn this on to exclude the item from the project or off to include it; you
can also right-click the item and choose Exclude from the shortcut menu to toggle
the setting. Only items that are files (for example, not classes) can be included.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 8 of 46

¶ Main file : turn this on to mark the selected item as the main file for the project; you
can also right-click the item and choose Set Main from the shortcut menu to toggle
the setting. This is only available for forms and programs.

¶ Class: the class the form or class is based on. This is always read-only and only
displays for forms and classes. Click the link to jump to the class item.

¶ Library : the class library for the class the form or class is based on. This is always
read-only and only displays for forms and classes. Click the link to jump to the class
library item.

¶ Base class: the base class for the class. This is always read-only and only displays
for classes.

¶ Include file : the include file for the class or form. This is always read-only and only
displays for classes and forms. Click the link to jump to the include file.

¶ OLEPublic: turned on if the class is a COM server. This only displays for classes.

¶ Icon : the custom icon for the class displayed in the Project Manager, the Class
Browser, and Project Explorer. This is only displays for classes. Click the image to
select the desired icon file; if you select Cancel, you are asked if you want to remove
the icon for the class.

¶ Toolbar icon : the custom icon for the class displayed in the Form Control Toolbar.
This is only displays for classes. Click the image to select the desired icon file; if you
select Cancel, you are asked if you want to remove the icon for the class.

¶ Description : the description for the item. For files, this is stored in the PJX file. For
classes, it’s stored in the VCX file. For tables, views, connections, and fields and
indexes in views or tables belonging to a database, it’s stored in the DBC file. (Note
that there’s no usual way to get or save the description for an index; although it can
be stored in a DBC, DBGETPROP and DBSETPROP don’t support it, so Project
Explorer manually reads from and writes to the PROPERTY memo of the index’s
record in the DBC.) This is disabled for fields and indexes in free tables and stored
procedures since there’s nowhere to store it.

You can right-click the editbox and choose Zoom to display the content in a form you
can resize and change the font for more convenient editing.

¶ User: user-defined information for the item. For files, this is stored in the PJX file.
For classes, it’s stored in the VCX file. This is disabled for all other item types. Like
Description, you can right-click and choose Zoom to display the content in an editing
form.

¶ Tags: keywords that apply to the item. Tags are discussed in more detail later.

¶ Category: a color coding for the item. Category is discussed in more detail later.

Click the Save button to save any changes or Revert to restore the previous property
values.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 9 of 46

Project properties

When you select a project in Project Explorer, it displays the properties of the project at the
right (Figure 7). This replaces several modal dialogs in the Project Manager. The
properties on the Project Settings page are those from the Project page of the Project
Manager’s Project Information dialog; see the Project Tab, Project Information Dialog Box
topic in the VFP help for details. Some comments about these properties:

Figure 7. Project Explorer replaces several modal dialogs with the properties of the selected project.

¶ Project : the name and path of the project. This is always read-only.

¶ Home: the home folder for the project. This is always read-only. Click the link to
open a File Explorer window for the folder the project is in.

¶ User: user-defined information for the project itself. This is stored in the “H” record
of the PJX file. You can right-click the editbox and choose Zoom to display the
content in a form you can resize and change the font for more convenient editing.

¶ Project hook : to add a project hook to a project, turn this on, click the button with
the ellipsis (…) beside the project hook class name, and select a VCX and a class.
You’ll get a warning if the class you select isn’t a subclass of ProjectHook. To remove
the project hook for the project, turn this off. Note that project hook changes take

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 10 of 46

effect immediately, unlike with the Project Manager where you have to close and
reopen the project.

¶ Last built : the date and time the project was last built. This is always read-only.

¶ Attach icon : to specify an icon for the compiled file, turn this on, click the image,
and select the desired icon file.

The properties on the Build Settings page (Figure 8) are those from the Version dialog
displayed when you click the Version button in the Build Options dialog, which is displayed
when you click the Build button in the Project Manager. See the EXE Version Dialog Box
topic in the VFP help for details.

Figure 8. You have to display two modal dialogs to get at these settings in the Project Manager.

The properties on the Servers page (Figure 9) are those from the Servers page of the
Project Manager’s Project Information dialog; see the Servers Tab, Project Information
Dialog Box topic in the VFP help for details. For Class library and Class name, click the link to
jump to the class library or class item.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 11 of 46

Figure 9. The Servers page has the settings from the Servers tab of the Project Information dialog.

Item organization

The Project Manager provides one way to organize item: by type. The tabs at the top allow
you to see either all items (the All tab) or just those of the specified type.

One thing I have always wanted is to way to organize items in other ways. For example, I
use an in-house framework. Sometimes I want to see framework items but often I just want
to see the items specific to the project. Occasionally, I’d like to see only those items I’m
currently working on, such as the various classes and programs in a certain module. In
other words, I need user-defined categorization.

Project Explorer provides two ways to categorize items: by tags and by category.

Tags

Tags are keywords that apply to an item. The default tag for an item is the Project Manager
tab it appears in: Data for free tables, queries, databases, tables, fields, indexes, views,
connections, and stored procedures; Documents for forms, reports, and labels; Classes for
class libraries and classes; Code for programs, applications, and API libraries; and Other for
menus, text files, and other types of files including images. However, when you click the
down arrow for the Tag control, you see a list of the available tags with checkboxes so you
can select all the tags that apply to the item.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 12 of 46

To define your own tags, choose Tag Editor from the Project Explorer menu (Figure 10).

Figure 10. The Tag Editor allows you to define your own tags.

The “built-in” tags (the ones representing Project Manager tabs) can’t be edited or
removed, but you can click the Add button and enter a tag name to create a new one or
select one and change its name or remove it. Tags are stored in a table named
ProjectExplorerTags.dbf in the Project Explorer folder.

The Tag combobox in the toolbar at the top of the window tells Project Explorer to display
only those items containing that tag (you can also choose All to select all tags). Without any
custom tags, it acts like the tabs in the Project Explorer. However, if you create a custom tag
and, for example, use that tag for a few classes and programs, when you select that tag from
the comboxbox, only those classes and programs appear in the TreeView. So, to use my
earlier examples, I could tag all my project-specific items as “Project”, and then choose
“Project” from the combobox when I only want to see those items.

You can assign one or more tags to a group of items using the Assign Tags to Items function
in the Project Explorer menu (Figure 11). Select the tags to add to the items using the Tags
control. Enter a VFP expression into the Filter editbox to specify which items to add the
tags to. The Properties combobox assists with entering a filter based on item properties:
select a property from the list and click the Insert button to add it to the editbox. For
example, to add the tags to forms, use the following filter expression:

Item. TypeName = 'Form'

Here’s a filter expression for adding a tag to all graphics files:

inlist(lower(justext(Item.Path)), 'bmp ', 'png', 'jpg', 'jpeg', 'ico', 'gif')

Click the “…” button to display the VFP Expression Builder dialog. You can also right-click
the editbox and choose Zoom to display the content in a form you can resize and change the
font for more convenient editing.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 13 of 46

Item filters are discussed in more detail in the Sorting and filtering section.

Figure 11. You can assign tags to a group of items using the Assign Tags to Items function.

Click OK to add the tags to all items matching the filter condition.

Category

Category is a color coding for an item. I took the inspiration for this feature from Microsoft
Outlook, which allows you to assign a category to an item to color-code it.

The Category combobox for an item allows you to select a single category for the item.
Selecting one changes the color of the item’s node in the TreeView to the color for the
category (it affects both the foreground and background colors). There are eight categories
available. Initially, the categories are named for their colors (none [black], red, blue, green,
yellow, orange, purple, and indigo) but you can use the Category Editor (Figure 12),
available from the Project Explorer menu, to change the names and even the colors.

Figure 12. The Category Editor allows you to customize the labels and colors of categories.

To edit a category, select it in the list and enter a new name or click the colored squares to
select new foreground and background colors (the Display setting determines which color
is used in the listbox). Categories are stored in a table named ProjectExplorerCategories.dbf
in the Project Explorer folder.

Using tags and categories

What’s the difference between a tag and a category? You can use these categorization
features any way you wish, but I think of tag as what the item is, which is usually

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 14 of 46

permanent, and category as a short-term description. For example, you may use a schema
where red means Unfinished, blue means Untested, and black means Completed. Once an
item is finished, you change its category from Unfinished to Untested, and once testing is
done, from Untested to Completed. You can quickly tell at a glance which items belong in
which category by the node color.

The tags and category for each item in a project are stored in the meta data table for the
project, named ProjectName_MetaData.dbf, where ProjectName is the name of the project,
in the solution’s folder.

While the tag combobox allows you to display only those items having a certain tag, to
display only items in a certain category, you have to use filtering.

Sorting and filtering

The Sort and Filter function (Figure 13), available in the Project Explorer menu and the
toolbar (), gives you control over which items appear in the TreeView and in what order.

Figure 13. The Sort and Filter dialog gives you control over which items appear in the TreeView and in what
order.

The choices for sorting are by Name (the item name, case-insensitive), Last Modified Date,
and Category. You can choose between ascending and descending order.

Enter a VFP expression into the Filter editbox to filter the items in the TreeView. The
Properties combobox assists with entering a filter based on item properties: select a
property from the list and click the Insert button to add it to the editbox. For example, to
display only those items modified in the past 30 days, use the following filter expression:

ttod(Item.LastModified) >= date() Ƶ 30

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 15 of 46

Click the “…” button to display the VFP Expression Builder dialog. You can also right-click
the editbox and choose Zoom to display the content in a form you can resize and change the
font for more convenient editing.

Table 1 lists the more useful properties.

Table 1. The more useful properties of project items.

Property Description

CategoryName The category for the item (“None” by default)

Exclude .T. if the item is excluded from the project

IncludeFile The name of the include file for the class or form

IsBinary .T. if this is a VFP binary file

IsFile .T. if this is a file (for example, .F. for a class)

ItemBaseClass The base class for the class or form

ItemClass The class for the form

ItemLibrary The VCX for the class specified in ItemClass

ItemName The name of the item

ItemParentClass The parent class for the class

ItemParentLibrary The VCX for the class specified in ItemParentClass

LastModified The date and time the item was last modified

MainFile .T. if this is the main file for the project

ParentPath The path for the item’s parent (for example, the DBC in the case of a table in a
database)

ParentType The parent type (see Type)

Path The path for the item

Tags A comma-delimited list of tags

Type The item type; for example, “P” for program, “K” for form, etc. See the FILETYPE_*
constants in FoxUser.h and ProjectExplorer.h for the codes for each type

TypeName The full name of the item type; for example, “Program” or “Form”

User The value of the User property

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 16 of 46

VersionControlStatus The item’s version control status; see the ccVC_STATUS_* constants in
ProjectExplorer.h for the codes (the same as Mercurial and Git use)

When a filter has been set or the sort changed, the tooltip for the Sort & Filter button in the
toolbar displays the current filter and sort settings. To reset them to default, right-click the
button. Alternatively, to clear the filter, choose Sort and Filter from the Project Explorer
menu again, clear the editbox, and click OK.

To save the sort and filter for future use, click the Save button and specify the name and
path for a .filter file (an XML file containing the settings). To load a sort and filter, click the
Load button and choose the desired .filter file.

Building

Click the button in the toolbar to display the Build Options dialog (Figure 14) to build
the selected project (this button is disabled if there’s no main file for the project).
Alternatively, click the arrow beside the button to display additional build choices:

¶ Build P roject : builds the selected project without displaying the dialog and using
the previous build settings.

¶ Build Solution : builds all projects in the solution without displaying the dialog. You
can also right-click the TreeView and choose Build Solution from the shortcut menu.

¶ Rebuild Project : builds the project with the RECOMPILE option without displaying
the dialog

¶ Rebuild Solution : builds all projects in the solution with the RECOMPILE option
without displaying the dialog.

The first time a project is built, the Build Options dialog appears even if you chose a build
function from the menu.

Figure 14. The Build Options dialog allows you to specify build settings.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 17 of 46

The options in the Build Options dialog are the same as they are in the Project Manager’s
Build Options dialog except there’s no Version button since the version settings are
available in the Build Settings page of the project properties and there’s a control for the
output file name rather than another dialog for the file name. Project Explorer remembers
these settings on a project-by-project basis so after you’ve built a project or solution the
first time, you can just choose Build Project or Build Solution from the build button menu to
use the same settings without displaying the dialog.

Note: if you get an error during the build process, such as “File cannot be closed because
outstanding references exist,” close Project Explorer, CLEAR ALL and CLOSE ALL, then
open Project Explorer and try again.

Managing items

The toolbar has functions to manage project items.

Modifying

Click the Modify button () to display the editor for the selected item. Alternatively, you
can double-click the item if the Project double-click action setting in the Options dialog
(discussed later) is set to Modify selected file or right-click the item and choose Modify from
the shortcut menu. This is available for all item types except API libraries. There’s special
handling for images, which display the registered application for the type of image file, for
applications, which open Project Explorer for the project that builds to the application if
that project exists, and for class libraries, which open that VCX in the Class Browser.

Running

Click the Run button () to “run” the item. Alternatively, you can double-click the item if
the Project double-click action setting in the Options dialog (discussed later) is set to Run
selected file or right-click the item and choose Run from the shortcut menu (it appears as
“Browse” for tables and views). In the case of programs, forms, menus, and applications,
the item is run. For non-form classes, the class is instantiated and added to _SCREEN at
position 0, 0. For form classes, the class is instantiated and a reference to it added to
_SCREEN. For reports and labels, the item is previewed. For tables, views, and queries
(including fields and indexes in tables and views), the item is opened and displayed in a
BROWSE window. For other item types, the Run button is disabled.

Here are some tips for running code from Project Explorer:

¶ For obvious reasons, any code run from Project Explorer should not do CLOSE ALL
or CLEAR ALL.

¶ I found running an application using controls from Carlos Alloti’s ctl32 library a bit
problematic. The issue is that some of the controls aren’t completely released until
later than you think and if your clean up code does something like SET PROCEDURE
TO, it can cause errors and even crashes. The solution is to use RemoveObject to
specifically remove the controls in the Destroy method of your forms. For example,
if you use Emerson Reed’s ThemedExplorerBar control from his Themed Controls

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 18 of 46

VFPX project, you may wish to add the following to the Destroy method of the
control:

This.RemoveObject('ctl32_scrollbar')

¶ Error handling can be a little more complicated. Project Explorer wraps the DO
command in a TRY structure. My error handler allows the program to continue
(depending on the severity of the error) by using RETURN TO to return to the
method containing the READ EVENTS statement for the application. The problem is
that you can’t use RETURN TO within a TRY; attempting to do so is an untrappable
error. Complicating this is that SYS(2410), which theoretically is supposed to tell
you if a TRY is in effect, is essentially useless because it’s easily fooled by a
combination of ON ERROR, Error method, and TRY error handling strategies. So,
Project Explorer creates a private variable, which is visible to the called code, named
plInsideTry and sets it to .T. Before using RETURN TO in your code, check whether
plInsideTry exists and if so whether it contains .T. In that case, do not use RETURN
TO.

Creating

Click the New button () to create a new item of the same type as the selected item (if the
Add and New allow any file type option, discussed later, is turned off) or of any type (if that
option is turned on). This button is disabled for application, field, index, API library, and
“other” items (if that option is turned off) and enabled for all other types. For connections
and views, you’re prompted for a name. For other types except classes and forms, a file
dialog appears so you can specify the name and path of the new item. Notice that this is
different than the Project Manager, which asks you for the name when you save the item.

When you click this item for classes, the New Class dialog (Figure 15) appears. It has
similar functionality to that dialog in the Project Manager, with these additional features:

¶ Based on is set to the name of the selected class if there is one. This makes it easy to
subclass an existing class by simply selecting it and clicking the New button.

¶ From is set to the selected VCX but it’s a combobox containing the ten most recently
used class libraries, so you can select one from the list. Based on adjusts to display
the classes in the selected library. The libraries are listed in most recent to least
recent order.

¶ You can create a new class by subclassing the Based on class or by copying it (the
equivalent of dragging a class from one VCX to another and then renaming it in the
Project Manager).

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 19 of 46

Figure 15. The New Class dialog displays when creating a new class.

There are a couple of ways to choose which class to base a new form on:

¶ When a form class is selected, right-click the class and choose Create Form from
Class, then specify the name and path of the new form in the file dialog that appears.

¶ When forms are displayed, click the New button to display the New Form dialog
(Figure 16). The Based on and From controls work the same as they do in the New
Class dialog.

Figure 16. The New Form dialog appears when creating a new form.

As with modifying, an event fires when the editor is closed. We’ll discuss that later when
we discuss addins.

Adding

Click the Add button () to add an item of the same type as the selected item (if the Add
and New allow any file type option, discussed later, is turned off) or of any type (if that
option is turned on) to the project. This button is only enabled for item types that are files
(if that option is turned off). When you add a table to a database, it’s added both to the
database and to the project.

Removing

Click the Remove button () to remove the selected item. This button is only enabled for
item types that are files as well as classes, connections, views, and tables in a database.
You’re prompted whether you want to remove the item from the project (in the case of a

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 20 of 46

class, from the VCX, or in the case of an item in a database, from the database) or if you
want it both removed and deleted.

Managing solutions

The Project Explorer menu has several functions for managing solutions:

¶ Open Solution displays a dialog so you can open a project or solution.

¶ Add Project to Solution adds a project to the solution. Note that you can only add a
project in the same folder structure as the solution; that is, a PJX file in the same
folder as the solution file or a subdirectory of that folder.

¶ Remove Project from Solution removes the selected project from the solution. Note
that you can’t remove the last project from a solution.

¶ Cleanup Solution cleans up each project (basically packing the PJX) and packs the
meta data tables.

Version control

Project Explorer is integrated with modern distributed version control systems (DVCS)
such as Mercurial and Git. This integration takes several forms. First, as mentioned earlier,
the icon for a file displayed the TreeView indicates its version control status. See Table 2
for a list of the icons and their meanings.

Table 2. Version control status icons.

Icon Meaning

 Unversioned

 Ignored

 Added

 Removed

 Modified

 Clean (unmodified)

Second, if a solution is under version control, the shortcut menu for items in the TreeView
has several functions related to version control:

¶ Add File to Version Control : adds the file to version control. This function is
disabled if the item is already in version control or isn’t a file.

¶ Remove File from Version Control : removes the file from version control. This
function is disabled if the item isn’t in version control or isn’t a file.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 21 of 46

¶ Convert Binary to Text : creates a text equivalent of the file. This is useful, for
example, for generating the text equivalent of a table after browsing it and added,
editing, or deleting records. Because this is a potentially destructive operation (the
text equivalent is overwritten), you are asked to confirm that you want to proceed.

¶ Convert Text to Binary : recreates the file from its text equivalent. This can be used
after merging or updating the text equivalent from another branch or different
repository so you get the updated binary file. Because this is a potentially
destructive operation (the binary file is overwritten), you are asked to confirm that
you want to proceed.

¶ Commit File : commits the file. This function is disabled if the item isn’t in version
control, isn’t added, removed, or modified, or isn’t a file.

¶ Commit All : commits all changes, not only to items in the project but to the project
itself.

¶ Revert : reverts the file. This function is disabled if the item isn’t in version control,
is unversioned or ignored, or isn’t a file.

¶ Revision Histo ry : displays the revision history for the item. In the case of a VFP
binary file, it’s actually the revision history of the text equivalent that’s displayed.
This function is disabled if the item isn’t in version control or isn’t a file.

¶ Visual Diff : displays the visual diff dialog for the item. In the case of a VFP binary
file, it’s actually the diff for the text equivalent. This function is disabled if the item
isn’t in version control, isn’t added, removed, or modified, or isn’t a file.

¶ Repository Browser : display the repository browser.

To put a solution under version control, select the Version Control Properties function in the
Project Explorer menu to display the dialog shown in Figure 17 . This dialog has the
following settings:

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 22 of 46

Figure 17. The Version Control Properties dialog manages version control settings for the solution.

¶ Solution uses version control : turn this on to put the solution under version
control. Note that once you’ve turned it on, you can’t turn it off.

¶ Version control provider : the version control provider to use: Mercurial or Git
(others can be supported as discussed later). Once you’ve selected a provider, you
can’t change it.

¶ Binary files in repository : specifies whether binary files are included in the
repository. This is discussed in detail later.

¶ Automatically commit changes : turn this on to automatically commit changes to
files (discussed in more detail later). You can turn this on or off as desired.

¶ Auto -commit messages: these are the commit messages to use when some types of
changes are automatically committed: when a file is added or removed, the project
is cleaned up, the solution settings are saved, a project is built, or version control is
added to a solution. The build message supports text merge using Project as a
reference to the project being built and “{“ and “}” as the text merge delimiters. For
example, the default message of “Built the project: version {Project.
VersionNumber}” includes the version number of the build.

There are also some settings related to version control in the Options dialog, discussed
later.

If Automatically commit changes is turned on, when you add, remove, modify, or make
changes to the properties of items, the changes are automatically committed. In some cases,
you’re prompted for a description of the changes and in others, the message you specified
in the Version Control Properties dialog is used. Some changes affect only the file for the

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 23 of 46

item, such as when you modify the item or in the case of a class, create it or change its
Description or User. Some changes affect another file, such as adding or removing fields or
indexes in a table that belongs to a database, in which case both the table and the database
container are affected. Other changes affect the project, such as when files are added,
created, or removed or you change the Description or User property of a file-based item.
Project Explorer knows which files are affected with each type of change and automatically
commits those files.

You have three choices about whether binary files are included in version control, as
specified by the Binary files in repository setting:

¶ Binary files, no text equivalents: if this is selected, Project Explorer includes all files
in the project, including VFP binary files such as VCX, VCT, SCX, and SCT files in
version control. The project files themselves (PJX and PJT) are also included.

¶ Text equivalents, no binary files: if this is selected, VFP binary files are not included
in version control but all other file types and the text equivalents of the binary files
are. Project Explorer uses FoxBin2PRG, a VFPX (http://vfpx.org) project available
through Thor Updates or for download from VFPX, to convert VFP binary files to
their text equivalents and vice versa. This setting means, for example, that
MyClasses.vc2 (the text equivalent of MyClasses.vcx) is included in version control
but MyClasses.vcx and MyClasses.vct aren’t.

¶ Include both in repository: all files in the project plus the text equivalents of VFP
binary files are included in version control.

If Binary files in repository is set to anything but Binary files, no text equivalents, here’s what
happens when you do various things to a class (as an example) in Project Explorer:

¶ When you add a class library to a project, Project Explorer tells FoxBin2PRG to
create the text equivalent of the class library (VC2) and the project (PJ2). If auto-
commit is turned on, the text equivalents are committed, as are the VCX, VCT, PJX,
and PJT files if Include both in repository is used.

¶ When you modify the class and save it, Project Explorer tells FoxBin2PRG to create
the text equivalent of the class library the class belongs to. If auto-commit is turned
on, the text equivalent is committed, as are the VCX and VCT files if Include both in
repository is used.

¶ When you revert changes to the class library and Text equivalents, no binary files is
used, the VC2 file is reverted and FoxBin2PRG is told to regenerate the VCX and VCT
files from it. If Include both in repository is used, the VC2, VCX, and VCT files are
reverted.

¶ When you remove the class, Project Explorer removes the VCX and VCT files from
the project (and optionally deletes them), deletes the VC2 file, and removes the VCX,
VCT, and VC2 files from version control.

http://vfpx.org/

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 24 of 46

After you click OK in the Version Control Properties dialog, you are asked if you want
Project Explorer to create a repository for the solution. Choose No if a repository already
exists, in which case you’re asked to locate the folder containing the repository folder (that
is, the parent of the .git or .hg folder).

One thing to note about version control is that some providers are case-sensitive for
filenames. I’m not clear about VFP’s rules about filename case; sometimes I see files with a
“prg” extension and sometimes it’s “PRG,” and sometime a file that was “prg” is now “PRG.”
Although Project Explorer has code to handle filename case, I recommend turning off case
sensitivity if your provider supports it. For Git, use these command line directives to turn it
off:

git config -- global core.ignorecase true
git config -- system core.ignorecase true

Mercurial respects the case-sensitivity of the operating system, so for Windows, it’s case-
insensitive.

Also note that Project Explorer requires the latest version of FoxBin2PRG as it fixes a bug in
handling PJX files. As of this writing, that version isn’t available through the Thor Check for
Updates process, so be sure to get the latest version from the FoxBin2PRG repository
(https://github.com/fdbozzo/foxbin2prg).

Other functionality

Project Explorer options

The Options function in the Project Explorer menu displays the dialog shown in Figure 18 .
It has the following options:

Figure 18. The Options dialog has Project Explorer settings.

https://github.com/fdbozzo/foxbin2prg

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 25 of 46

¶ Project double -click action : determines whether double-clicking an item runs or
modifies it. This is the same setting as in the Projects page of the VFP Options dialog
so changing it in one place changes it in the other as well.

¶ Default provider : the default provider for the Version Control Properties dialog.

¶ Add files to version control upon add : turn this on to automatically add a file to
version control when it’s created or added to a project. This is the same setting as in
the Projects page of the VFP Options dialog so changing it in one place changes it in
the other as well.

¶ Remove files from version control upon removal : turn this on to automatically
remove a file to version control when it’s removed from a project. This is the same
setting as in the Projects page of the VFP Options dialog so changing it in one place
changes it in the other as well.

¶ Window type : choose Desktop to allow the Project Explorer window’s Desktop
property set to .T. Choose Dockable to allow the Project Explorer window to be
docked with other windows such as the Command window. In both cases, the
window can be moved outside the VFP desktop and it’s always on top. Choose
Neither if you want the window inside the VFP desktop, which means other
windows can be on top of it.

¶ Display user -defined class icons : turn this on to display the custom icon for a class
(the one specified in the Container icon setting in the Class Info dialog and the Icon
property in Project Explorer) in the TreeView or off to display an icon representing
the class’ base class. This is the same setting as in the Projects page of the VFP
Options dialog so changing it in one place changes it in the other as well.

¶ Displa y full path for project files : turn this on to display the full path for files or off
to display the path relative to the location of the project.

¶ Visible splitter : turn this on to display the splitter between the TreeView and the
properties pane as a grey bar with four dots or off to not display the splitter (it’s still
there; it just doesn’t have a visible appearance).

¶ Addin debug mode : turn this on to enable debug mode for addins: Project Explorer
shows information as addins are loaded and executed.

¶ Add and New allow any file type : turn this on to allow the Add and New functions
to display a dialog in which you can choose any file type. Turn it off to only allow a
file of the selected type to be chosen; for example, if a form is currently selected, Add
and New only allow you to add or create a form.

¶ Remove unused headers : turn this on to remove headers that don’t have any items
under them in the TreeView, such as “Labels” if there aren’t any labels in the project.

Drag and drop

Project Explorer supports the same drag and drop functionality that the Project Manager
does:

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 26 of 46

¶ You can drag a file from File Explorer to the TreeView to add it to the project.

¶ You can drag a class to a Form Designer or Class Designer window to add an
instance of the class to the form or class (if permitted).

¶ You can drag a class to another class library to copy it.

¶ The Project Manager doesn’t support this, but if you drag a control to the column of
a grid (the column must be selected in the Properties window first for this to work
correctly) and that column contains the default Text1 object, you’re asked if you
want it removed and if so, the new control becomes the current one in the grid.

¶ The Project Manager doesn’t support this, and the “no” icon makes it look like it
won’t work, but you can also drag a class to _SCREEN to add an instance of the class
there.

Refreshing the TreeView

If you make changes to files outside of Project Explorer (for example, modifying a program
using Notepad or when the project isn’t open in Project Explorer), the TreeView may not
display the current status of files. Right-click the TreeView and choose Refresh from the
shortcut menu to reload the TreeView.

Moving to a previous item

Click the Back button () in the toolbar to move back to the previously selected item. You
can also click the down arrow beside the Back button to display a list of previously selected
items and select one to go back to that item. This is a quick way to jump back and forth
between frequently edited items.

Project hook support

Because Project Explorer opens the project behind the scene (that is, the Project Manager is
actually open but invisible), the project appears in the _VFP.Projects collection and is
contained in _VFP.ActiveProject. In addition, project hooks are supported for the same
actions in Project Explorer that would trigger them in the Project Manager. Here are some
comments about that:

¶ Events such as QueryRemoveFile and QueryRunFile fire for files and classes but not
items in a database (tables, views, connections, and stored procedures), although
there’s some inconsistency because QueryNewFile does fire for new items in a
database.

¶ In the Project Manager, QueryRemoveFile fires before the prompt about removing
the file appears. In Project Explorer, QueryRemoveFile fires after the prompt.

¶ Unlike the Project Manager, an event fires when an editor is closed after creating or
modifying an ite, albeit not a project hook event since there isn’t one. We’ll discuss
that later when we discuss addins.

¶ Activate and Deactivate don’t fire because the Project Manager isn’t visible.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 27 of 46

¶ While project hooks are supported, addins are more powerful, easier to create and
install, and there are more of them. See the Addins section for more details.

Invoking the project builder

Right-click the TreeView and choose Builder from the shortcut menu to invoke the same
builder or builder dialog you would see in the Project Manager.

Unimplemented Project Manager features

The following are features of the Project Manager that weren’t implemented in Project
Explorer:

¶ Tearing off tabs into their own windows.

¶ Shrinking down the window to just show tabs.

¶ The Files page of the Project Information dialog.

¶ Selecting the code page for an item from the shortcut menu.

¶ Choosing Save As from the File menu to save to a new project.

Inside Project Explorer
Let’s look under the hood and see how Project Explorer was built.

Classes

All of the VCXs and most of the classes used in Project Explorer have “ProjectExplorer” or
“Project” as a prefix. The reason for that is to avoid conflict with classes and class libraries
that exist in your projects. For example, if Project Explorer had a class named BaseTextBox
and you have a class named BaseTextBox, Project Explorer would be confused when you
try to edit yours from within Project Explorer.

The first classes we’ll look at are those in ProjectExplorerItems.vcx. ProjectItem is the base
class for an item in a project. It has quite a few properties (see the About method for a l ist
of them and their descriptions), some of which match properties from a VFP File object
(such as Description, Exclude, and LastModified), others that describe what operations can
be performed on it (such as CanEdit, CanRemove, and CanRun), and still others that
describe where it fits into a hierarchy (such as HasChildren, HasParent, and ParentPath). It
also has a Tags property which contains a collection of tags for the item, a ForeColor
property which is the category for the item (originally I called this attribute “color” rather
than “category”), and a VersionControlStatus property which contains a single letter
indicating the version control status of the item (such as “M” for modified).

ProjectItem has several methods, some of which perform an action on the item and are
abstract in this class (such as EditItem, RemoveItem, and RunItem) and others which
provide management functions (such as GetTagString and SaveTagString).

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 28 of 46

A subclass of ProjectItem, ProjectItemFile, is the parent class for those items that are files,
such as programs and class libraries but not classes or views. Many of ProjectFile’s
methods use the appropriate method of the VFP File object to perform the operation, such
as RunItem, shown in Listing 1, which calls the Run method of the File object.

Listing 1. ProjectItemFile.RunItem calls the Run method of the VFP File object.

lparameters toProject
local loF ile, ;
 llReturn, ;
 loException as Exception
This.cErrorMessage = ''
if This.CanRun
 try
 loFile = toProject.Files.Item(This.Path)
 llReturn = loFile.Run()
 catch to loException
 This.cErrorMessage = loException.Message
 endtry
endif This.CanRun
retu rn llReturn

The remainder of the classes in ProjectExplorerItems.vcx are specific for each item type.
For example, ProjectItemConnection is for connections in a database and ProjectItemMenu
is for a menu. These items have the properties set appropriately for the item type. For
example, ProjectItemApplication, which represents an application item, has CanInclude set
to .F. because an application cannot be included in a project, CanRun set to .T. because an
application can be run, DefaultTags set to “Code” because that’s the default tag associated
with applications, and TreeViewImage set to “application” because that’s the key of an
ImageList image used for the TreeView node for an application. It also has code in
CanEdit_Access that returns .T. if a project can be found for the application and code in
EditItem that uses Project Explorer to open that project.

The next set of classes we’ll look at are in ProjectExplorerEngine.vcx. ProjectSettings
contains settings for a project, many of which (such as Encrypted, Icon, and MainFile) come
directly from the VFP Project object. The properties associated with the Version dialog of
the Build Options dialog, such as Author, Company, and Address, have to be parsed from
the DEVINFO field in the PJX file. ProjectSettings also has an oServers property which
contains a collection of ProjectExplorerServer objects; these objects contain properties
about the COM servers in the project, such as Description, Instancing, and ProgID (the
properties available in the Server tab of the Project Information dialog).

ProjectEngine represents a project. It has an oProjectItems property that contains a
collection of ProjectItem subclasses, one for each item in the project. It also has an
oProjectItem property that contains a ProjectItemFile object for the PJX file itself (mostly
used for its VersionControlStatus property), an oProjectSettings property that contains the
ProjectSettings object for the project, and an oProject property that contains a reference to
the VFP Project object, and a cProject property that contains the name and path for the PJX
file. See the About method for a complete list of properties and their descriptions.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 29 of 46

The main method in ProjectEngine is GetFilesFromProject, which adds a ProjectItem
subclass for each file in the project to oProjectItems. It uses AddFileToCollection to do most
of the work and calls GetClasses, GetDatabaseItems, and GetTableItems to add items for the
classes, items in databases, and fields and indexes in free tables, respectively, to the
collection. It also has some helper methods, such as GetItemForFile, which returns the
ProjectItem subclass for the specified file, and GetItemParent, which returns the
ProjectItem subclass that’s the parent for the specified item (for example, the item for the
VCX that the specified class belongs to).

ProjectExplorerSolution represents a solution. It has an oProjects property that contains a
collection of ProjectEngine objects, one for each project in the solution, and a cSolutionFile
property that contains the name and path to the solution file. It also has an oVersionControl
property that contains a subclass of VersionControlOperations to provide version control
services and several properties, such as lAutoCommitChanges, that specify the version
control behavior. It has numerous methods for dealing with projects, including
OpenProjects, CloseProjects, CleanupSolution, AddProject, and RemoveProject. See the
About method for a complete list of members and their descriptions.

ProjectOperations is a small class that performs operations on a project. It has methods
such as AddItem, EditItem, RunItem, and RemoveItem which do what their names imply.

ProjectAddins provides addin support. This is discussed in the Addins section.

VersionControlOperations is an abstract class that provides version control services, such
as creating a repository, adding, removing, committing, and reverting files, and getting the
status of files. Two of its subclasses, MercurialOperations and GitOperations, implement the
actual behavior for Mercurial and Git support. Both of these use the command line API,
calling hg.exe and git.exe, respectively, with the appropriate parameters for the operation.
VersionControlOperations has a cFoxBin2PRGLocation property that contains the path to
FoxBin2PRG, a VFPX project (https://github.com/fdbozzo/foxbin2prg) that converts VFP
binary files to their text equivalents and vice versa. VersionControlOperations’
nIncludeInVersionControl property determines what files are included in version control:
binary files only, text equivalents only, or both.

The final set of classes we’ll look at are in ProjectExplorerUI.vcx. This class library contains
the UI classes for Project Explorer, such as the various dialogs and of course the Project
Explorer form itself, ProjectExplorerForm (used if the Window has Desktop turned on and
Dockable settings turned off), ProjectExplorerFormDesktop (used if Window has Desktop
turned on is turned on), and ProjectExplorerFormDockable (used if Dockable is turned on).

ProjectExplorerForm uses many of these classes. Its oSolution and oOperations properties
contain instances of ProjectExplorerSolution and ProjectOperations, respectively. oItem
contains the ProjectItem subclass for the currently selected item and oProject contains a
reference to the ProjectEngine object that item belongs to. oProjectSettings contains a
reference to the ProjectSettings object that belongs to the current project, just for data

https://github.com/fdbozzo/foxbin2prg

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 30 of 46

binding purposes. The class diagram shown in Figure 19 shows the relationship between
the main classes.

Figure 19. Class diagram for main Project Explorer classes.

ProjectExplorerForm is a subclass of ProjectExplorerExplorerFormTreeView, a renamed
version of an Explorer-style class I’ve discussed before (see my white paper titled “Creating
Explorer Interfaces in Visual FoxPro” at http://doughennig.com/papers/default.html). This
class and several related classes in ProjectExplorerExplorer.vcx and
ProjectExplorerTreeView.vcx provide the basics of TreeView and Explorer-style form
handling.

After Project Explorer opens, it adds a new member to _screen: oProjectExplorers, which is
a collection of Project Explorer instances (you can open more than one at a time). You can
access the Project Explorer form using the folder for the project or solution as the key (you
can also use an index number). For example, if I open a solution from C:\My
Projects\Customer A\Main Application, I can reference the open Project Explorer using:

_screen.oProjectExplorers(' C:\ My Projects \ Customer A \ Main Application')

This is handy if you want to change something about the form (although that’s better done
with addins, as I’ll discuss in the Addins section) or want to access some member. For

http://doughennig.com/papers/default.html

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 31 of 46

example, the following code displays the total number of items in all projects in the
solution:

lnItems = 0
loExplorer = _screen.oProjectExplorers(1)
for each loProject in loExplorer.oSolution.oProjects foxobject
 lnItems = lnIt ems + loProject.oProjectItems.Count
next loProject
messagebox(lnItems)

One other class you may be interested in is ProjectExplorerWindowManager. This class is
used so Project Explorer knows when a designer window, such as the Form Designer, is
closed so it can take the appropriate action. This class’ SetBinding method locates the
desired designer’s window by its caption and uses BINDEVENT() to bind to its Destroy
event. When that event occurs, the class raises its own WindowDestroyEvent. The EditItem
and NewItem methods of ProjectExplorerForm bind to WindowDestroyEvent so the form
receives notice when the designer is closed. Because the user could open more than one
designer at a time, a collection of the handles of the windows and the items they’re editing
is stored in the oWindows property of the form.

Files

ProjectExplorer.app is the Project Explorer application. In the same folder as the app are
the following files:

¶ ProjectExplorer.pjx and pjt: the project for Project Explorer.

¶ System.app: the GDIPlusX system file (GDIPlusX is another VFPX project); Project
Explorer uses it to create images files of colored squares for the Category combo
box.

¶ ProjectExplorerCategories.dbf and cdx: contains the category definitions. This file is
created by copying CategoriesSource.dbf from the Source folder if it doesn’t exist.

¶ ProjectExplorerTags.dbf and cdx: contains the tag definitions. This file is created by
copying TagSource.dbf from the Source folder if it doesn’t exist.

¶ ProjectExplorerSettings.xml: contains the list of version control providers
supported by Project Explorer and the classes that implement their behavior plus
the path for the binary to text converter (currently only FoxBin2PRG is supported).
To support another version control provider, subclass VersionControlOperations
and add an entry for it to this file. To specify that the path for the binary to text
converter is an expression that must be evaluated, surround it with curly braces. To
specify that you’re not using any binary to text converter, set the path to blank.
Here’s the content of this file:

 <settings>
 <versioncontrol>
 <provider name="Mercurial" class="MercurialOperations"
 library="ProjectExplorerEngine.vcx" />
 <provider name="Git" class="GitOperations"

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 32 of 46

 library="ProjectExplorerEngine.vcx" />
 </versioncontrol>
 <textconverter path=" { execscript(_screen.cThorDispatcher,
 'Thor_Proc_GetFoxBin2PrgFolder') } " />
 </settings>

The subdirectories of the Project Explorer main folder are:

¶ The Addins folder contains addin PRG files.

¶ The Source folder contains all the source code for Project Explorer.

¶ The Tests folder contains FoxUnit tests (FoxUnit is another VFPX project).

¶ The ThorUpdater folder contains files necessary to support the Thor Check for
Updates process; see https://vfpx.github.io/thorupdate/ for details on how that
works.

Project Explorer creates the following files in the folder where your project exists:

¶ Solution.xml: the file listing the projects in the solution and their settings. Here’s an
example of this file:

 <solution>
 <projects>
 <project name="demo1.pjx" buildaction="3" recompile="false"
 displayerrors="true" regenerate="false" runafterbuild="false"
 outputfile="Demo1.exe" />
 <project name="demo2.pjx" buildaction="5" recompile="false"
 displayerrors="true" regenerate="false" runafterbuild="false"
 outputfile="Demo2.dll" />
 </projects>
 <versioncontrol class="MercurialOperations"
 library="ProjectExplorerEngine.vcx" repository=""
 includeinversioncontrol="2" autocommit="true"
 fileaddmessage="Added file" fileremovemessage="Removed file"
 cleanupmessage="Project cleanup"
 savedsolutionmessage="Solution settings changed "

 buildmessage="Built the project: version {Project.VersionNumber}" />
</solution>

¶ Project_Metadata.dbf, cdx, and fpt (where Project is the name of the project file): the
meta data for each item in the project. There is one table per project in the solution.
The columns in this table are KEY, which contains a unique ID for the item,
FORECOLOR, which contains the category number, TAGS, which is a carriage return
delimited list of tags for the item, and CURRENT, which is used for internal purposes
(deciding which items have been removed from the project outside Project
Explorer).

Project Explorer works with PJX files just like the Project Manager does. It only makes one
change to a PJX file beyond what the Project Manager does: it assigns a unique ID
(SYS(2015) value) to each file in the project and puts the ID into the DEVINFO field in the

https://vfpx.github.io/thorupdate/

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 33 of 46

PJX file. As far as I can tell, DEVINFO is only used by the “H” record (the one for the project
itself) so putting values into it doesn’t affect anything.

For items that aren’t files, such as classes, which don’t have a record in the PJX, the KEY
value stored in the meta data table is as follows:

¶ For a class, the ID is ParentID~ClassName. For example, for a class named MyClass in
MyClasses.vcx (which has an ID of _4WK0O1AXW), KEY is _4WK0O1AXW~myclass.

¶ For a field or index in a free table, the ID is Field~ParentID~FieldName or
Index~ParentID~TagName. For example, for a field named CUSTOMERID in
Customers.dbf (which has an ID of _4WK0O1AYY), KEY is Field~
_4WK0O1AYY~customerid.

¶ For a table, view, connection, or stored procedure in a database, the ID is
ParentID~Name. For example, for a table named Customers in MyDatabase.dbc
(which has an ID of _4WD11QLRS), KEY is _4WD11QLRS~customers.

¶ For a field or index in a table or view in a database, the ID is
Field~DatabaseID~TableOrViewName.FieldName or Index~DatabaseID~
TableName.TagName. For example for a field named CUSTOMERID in the
CustomerInvoices view in MyDatabase.dbc (which has an ID of _4WD11QLRS), KEY
is Field~_4WD11QLRS~customerinvoices.customerid.

Running Project Explorer from Thor

If you install Project Explorer from the Thor Check for Updates function, it automatically
creates a “tool” for Project Explorer and adds it to the Thor Tools, Applications menu. If you
instead downloaded Project Explorer from its repository or cloned the repository, copy
Thor_Tool_ProjectExplorer.prg from the ThorUpdater subdirectory of the Project Explorer
folder to the Thor\Tools folder of your Thor folder, then edit that PRG and replace the
folder specified for the FolderName property and the DO command with the correct
location of Project Explorer on your system.

If you wish to assign a hot key to Project Explorer (I use Ctrl+Alt+P), use the Tool
Definitions tab of the Thor Configuration dialog.

Project Manager bugs

While working on Project Explorer, I came across some bugs in the project object model
that Project Explorer has to deal with:

¶ Calling Files.Add for an EXE adds it as type “x” (other file) rather than “Z”
(application). Project Explorer makes sure it’s the correct type.

¶ Calling Files.Add for a table in a database returns the file object for the database not
the table.

¶ A table in a database doesn’t have a record in the PJX file unless the table is included
in the project. However, you can’t do that programmatically. Project Explorer

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 34 of 46

handles it by manually adding or removing a record for the table from the PJX when
you change the exclude status of the table.

¶ Calling Files.Add for a VCX sets it to the main file for the project if there isn’t one
already. This is a throwback to the days when ActiveDoc was supported. Project
Explorer turns that setting back off again.

¶ Speaking of main file, turning off the main file for a project doesn’t work properly:
the MainFile property is read-only and while Project.SetMain('') works, it returns .F.
and doesn’t clear MainFile until the project closed and reopened. Project Explorer
hacks the PJX file to handle this.

¶ File.Run works from the Command window but not in code so Project Explorer has
to manually run the item.

Addins
As I mentioned earlier, while project hooks are supported, addins are more powerful,
easier to create and install, and there are more of them. Like project hooks, addins can
prevent the normal execution of a function under certain conditions. However, addins can
do a lot more, such as adding buttons or other controls to the user interface or adding items
to the shortcut or Project Explorer menu.

Addins auto-register themselves with Project Explorer. To add an addin to Project
Explorer, create a PRG with the appropriate code in the Addins subdirectory of the Project
Explorer folder. At startup, Project Explorer examines all PRGs in that folder and
automatically registers any that are active addins.

You can also create a MyAddins subdirectory of the Addins subdirectory and put addins
there. The benefit of that folder is that it isn’t touched when an updated version of Project
Explorer is installed. For example, if you enable or modify one of the stock addins that
comes with Project Explorer, it’s disabled and any changes lost when you install a new
version of Project Explorer because the PRG is overwritten. Instead, copy the PRG to the
MyAddins folder and modify the copy. Since it isn’t overwritten when a new version is
installed, it stays enabled or modified.

Template.txt in the Addins folder (see Listing 2) shows what the content of an addin
should contain (the header comments obviously aren’t required). Note that this is
procedural code rather than a class. This was a deliberate design decision because classes
stay open even after they’re no longer used and you have to close VFP or use CLEAR ALL to
be able to edit the addins in that case.

Listing 2. Template.txt has the content an addin should contain.

*==
* Program: *** PUT NAME HERE
* Purpose: *** PUT TEMPLATE PURPOSE HERE
* Author: *** PUT AUTHOR NAME HERE
* Last Rev ision: *** PUT LAST REVISION DATE HERE
* Parameters: toParameter1 - a reference to an addin parameter object if

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 35 of 46

* only one parameter is passed (meaning this is a
* registration call) or a reference to an object; see the
* documentation for the type of object passed for each
* method
* tuParameter2 - see the documentation for what's passed for
* each method
* tuParameter3 - see the documentation for what's passed for
* each method
* Returns: .T. if the method being ho oked should continue to execute
* or .F. if not. You can also return 0 to not continue
* and signal failure, 1 to not continue and signal
* success, or 2 to continue
*==

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = '*** specify method ***'
 toParameter1.Active = .T. && set to .F. to disable addin
 toParameter1.Name = '*** specify descriptive name (optional) ***'
 toParameter1.Order = 1 && specify order to process (optional)
 return
endif

* This is an addin call, so do it.

*** put code here

*** return appropriate value; see notes above
return .T.

The code structure was inspired by Thor, which uses a similar mechanism. At startup,
Project Explorer calls each PRG in the Addins folder as a “registration” call to determine
what the addin is for. It passes a single parameter (an execution call passes three
parameters, even if some of them are .F.) which is a registration object with Method, Active,
Name, and Order properties. As noted in Listing 2, you only have to set the Method
property to indicate which Project Explorer method this should be an addin for. Table 3
lists the different methods available. You can have as many addins for a particular method
as you wish; the Order property determines in which order the addins are executed if
there’s more than one for a given method.

Table 3. The Project Explorer addin methods.

Addin When Executed Parameters Success
Flag

Projects and solutions

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 36 of 46

Addin When Executed Parameters Success
Flag

BeforeOpenSolution
AfterOpenSolution

When a solution is
opened

ProjectExplorerSolution
object,
solution folder

BeforeGetProjectSettings
AfterGetProjectSettings

When settings are
retrieved from the
project: at startup,
after a project is built,
and when the project
is reverted

ProjectSettings object

BeforeLoadTreeView
AfterLoadTreeView

When the TreeView is
loaded (e.g. when
selecting a tag to
display items for)

ProjectExplorerForm
object

After CreateMenu When clicking the
menu button

ProjectExplorerForm
object,
ProjectExplorerShortcu
tMenu object

AfterCreateShortcutMenu When right-clicking
the TreeView

ProjectExplorerForm
object,
ProjectExplorerShortcu
tMenu object

OnActivate When the Project
Explorer window gets
focus

ProjectExplorerForm
object

OnStartup When Project
Explorer is started

ProjectExplorerForm
object

BeforeSaveProjectSettings
AfterSaveProjectSettings

When you click Save
for the project
properties

ProjectSettings object

BeforeBuildProject
AfterBuildProject

When a project is
built

Project object Y

BeforeAddProjectToSolution
AfterAddProjectToSolution

When a project is
added to a solution

ProjectExplorerSolution
object,
path for PJX

Y

BeforeRemoveProjectFromSolution
AfterRemoveProjectFromSolution

When a project is
removed from a
solution

ProjectExplorerSolution
object,
path for PJX

Y

BeforeAddVersionControl
AfterAddVersionContr ol

When a solution is
placed under version

ProjectExplorerSolution
object

Y

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 37 of 46

Addin When Executed Parameters Success
Flag

control

BeforeChangeVersionControl
After ChangeVersionControl

When the version
control settings are
changed

ProjectExplorerSolution
object

Y

BeforeSaveSolution
AfterSaveSolution

When a solution is
created, a project is
added or removed
from a solution, you
click OK in the
Version Control
Properties dialog, you
click OK in the Build
Options dialog, or you
click Save for the
project properties

ProjectExplorerSolution
object

BeforeCleanupSolution
AfterCleanupSolution

When a solution is
cleaned up

ProjectExplorerSolution
object,
.T. if object code is
removed

OnExit When Project
Explorer is closed

ProjectExplorerForm
object

Item management

BeforeModifyItem
AfterModifyItem

When an item is
modified

ProjectItem object,
ProjectExplorerForm
object (AfterModifyItem
only)

Y

BeforeRunItem
AfterRunItem

When an item is run ProjectItem object Y

BeforeRemoveItem
AfterRemoveItem

When an item is
removed from the
project

ProjectItem object Y

BeforeAddItem
AfterAddItem

When an item is
added to the project

Project object, filename

BeforeNewItem
AfterNewItem

When an item is
created

Project object,
ProjectItem object

BeforeRenameItem
AfterRenameItem

When an item is
renamed

ProjectItem object,
new name

BeforeSaveProjectItem
AfterSaveProjectItem

When you click Save
for an item’s

ProjectItem object Y

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 38 of 46

Addin When Executed Parameters Success
Flag

properties

GetDefaultMetaDataForItem When an item is
loaded for the first
time

ProjectItem object

Version control

BeforeCreateRepository
AfterCreateRepository

When a repository is
created

Folder for repository

BeforeAddFilesToVersionControl
AfterAddFilesToVersionControl

When files are added
to version control

Array of file names

BeforeRemoveFilesFromVersionControl
AfterRemoveFilesFromVersionControl

When files are
removed from
version control

Array of file names

BeforeCommitFiles
AfterCommitFiles

When files are
committed

Commit message,
array of file names

BeforeRevertFiles
AfterRevertFiles

When files are
reverted

Array of file names

BeforeCommitAllFiles
AfterCommitAllFiles

When all changes are
committed

Commit message,
array of project file
names

BeforeRenameFileInVersionControl
AfterRenameFileInVersionControl

When a file is
renamed

Original file name and
path,
new name (stem only)

BeforeRevisionHistory
AfterRevisionHistory

When revision history
for a file is displayed

File name and path

BeforeVisualDiff
AfterVisualDiff

When visual diff for a
file is displayed

File name and path

BeforeRepositoryBrowser
AfterRepositoryBrowser

When the repository
browser is displayed

None

BeforeConvertBinaryToText
After ConvertBinaryToText

When Convert Binary
to Text is chosen

ProjectItem object,
ProjectExplorerForm
object

BeforeConvert TextTo Binary
After ConvertTextToBinary

When Convert Text to
Binary is chosen

ProjectItem object,
ProjectExplorerForm
object

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 39 of 46

The code following the registration handler is the actual code executed when the addin is
called. This code can do anything you wish and use the parameters passed in (identified in
Table 3) as necessary. The return value of this code determines whether the method calling
the addin continues or not. This is discussed in more detail in a moment.

Listing 3 is an example of a simple addin: it displays a message when an item is run. Note
that you can disable the addin by simply setting Active to .F.

Listing 3. A simple addin that displays a message when an item is run.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = 'BeforeRunItem'
 toParameter1.Active = .T.
 return
endif

* Display a message.

messagebox('Before run addin for ' + toParameter1.ItemName)
return .T.

The Project Explorer addin mechanism was inspired by the Class Browser. Every method
that supports an addin calls code like this:

This.oAddins.ExecuteAddin('MethodName', parameters)

or like this:

if not This.oAddin s.ExecuteAddin(' MethodName', parameters)
 return .F.
endif

or like this:

if not This.oAddins.ExecuteAddin(' MethodName', parameters)
 return This.oAddins.lSuccess
endif

This.oAddins is a reference to a ProjectExplorerAddins object and MethodName is the name
of the addin to call. parameters represents zero to three parameters; Table 3 specifies
which parameters are passed to each addin.

The addin can return .T. to indicate the method should continue or .F. to prevent it from
continuing. The code can also return a numeric value: 0 means the method should not

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 40 of 46

continue because the operation failed or should fail, 1 means the method should not
continue because the addin handled it successfully so the normal behavior should not
execute (sort of like NODEFAULT in the method of a class), and 2 means the method should
continue. Not all methods respect the numeric value; 2 means continue and anything else
means don’t. The “Success Flag” column in Table 3 indicates which methods return .T. but
don’t continue if the addin returns 1 (that is, they use code like the third example above).
Note that typically only the Before methods care about continuing or not; the After
methods simply call the addin and ignore the return value since the operation is done at
that point (in other words, they use code like the first example above).

Examples

The code in Listing 4, taken from AddWLCProjectBuilderButton.prg written by Rick Borup,
adds a button to Project Explorer’s toolbar that, when clicked, opens the White Light
Computing (WLC) Project Builder written by Rick Schummer. It executes at startup
because it’s an addin for the OnStartup method. The execution code adds a button to the
toolbar (the first parameter is a reference to the Project Explorer form and its
oProjectToolbar member is the toolbar container). The call to SetToolbarControlPosition
positions it as the right-most control in the toolbar and adjusts MinWidth so the control is
always visible when the form is collapsed.

Listing 4. This OnStartup addin adds a button to the toolbar to open the WLC Project Builder.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = 'OnStartup'
 toParameter1.Active = .T.
 return
endif

* Add a button to the toolbar to open the Whit e Light Computing (WLC) Project
* Builder dialog for the active project.
* Requires the WLC Project Hook class library cprojecthook5.vcx (download from
* http://whitelig htcomputing.com/prodprojectbuilder.htm)
* To use: 1) Set toParameter1.Active = .T. (above)
* 2) Set the value of WLCProjectBuilderButton.cWLCProjectBuilderClass
* (below)

loToolbar = toParameter1.oProjectToolbar
try
 loToolbar.AddObject('cmdWLC ProjectBuilder', 'WLCProjectBuilderButton')
 loButton = loToolbar.cmdWLCProjectBuilder
 loButton.Height = loToolbar.cmdBack.Height
 loButton.Width = 30
 loButton.Caption = 'PB'
 loButton.ToolTipText = 'Open WLC Project Builder Dialog'

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 41 of 46

 loButton.Visible = .T.
 toParameter1.SetToolbarControlLocation(loButton)
 llOK = .T.
catch
 loToolbar.RemoveObject('cmdWLCProjectBuilder')
 llOK = .F.
endtry
return llOK

define class WLCProjectBuilderButton as CommandButton

* Set cWLCProject BuilderClass to the path and file name of the WLC
* cprojecthook5.vcx class library (or your subclass library).

 cWLCProjectBuilderClass = ' \ Development \ Tools \ VFP\ WLCProjectBuilder \ ' + ;
 'cProjectHook5.vcx'
 oWLCProjectBuilderToolbar = null

 functi on Init
 This.oWLCProjectBuilderToolbar = newobject('tbrProjectTools', ;
 This.cWLCProjectBuilderClass)
 return vartype(This.oWLCProjectBuilderToolbar) = 'O' and ;
 not isnull(This.oWLCProjectBuilderToolbar)
 endfunc

 function Click
 This.oWLCProjectBuilderToolbar.cmdProjectBuilder.Click()
 endfunc
enddefine

The code in Listing 5, taken from AddPackToShortcutMenu.prg, adds a Pack File function
to the TreeView’s shortcut menu. It executes when the user right-clicks the TreeView
because it’s an addin for the AfterCreateShortcutMenu method. The second parameter is a
reference to a ProjectExplorerShortcutMenu object, which is an object-oriented wrapper
for the VFP shortcut menu system. ProjectExplorerShortcutMenu’s AddMenuBar method
expects several parameters: the caption for the menu item, a command to execute when the
item is selected (loForm evaluates to the Project Explorer form, which has a cMainFolder
property containing the path for the Project Explorer application folder and an oItem
property, which is a ProjectItem object for the selected item), an expression that’s
evaluated when the shortcut menu is displayed that determines whether the menu item is
enabled, the path for the image file for the menu item, and the position the item appears at
in the menu. In this case, the command to execute is PackFile.prg in the Addins\Functions
folder, which accepts a filename as a parameter and packs that file. The menu item is
disabled if no item is selected or if the selected item isn’t a VFP binary file.

Listing 5. This AfterCreateShortcutMenu addin adds a Pack File function to the shortcut menu.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 42 of 46

* an addin for.

if pc ount() = 1
 toParameter1.Method = 'AfterCreateShortcutMenu'
 toParameter1.Active = .T.
 toParameter1.Name = 'Add Pack to Shortcut Menu'
 return
endif

* This is an addin call, so add "Pack File" as the third item in the shortcut
* menu.

tuParameter2.Add MenuBar('Pack File', ;
 "do (loForm.cMainFolder + 'Addins \ Functions \ PackFile') with loForm.oItem.Path", ;
 "vartype(loForm.oItem) <> 'O' or not loForm.oItem.IsBinary", ;
 , ;
 3)
return .T.

RunMainProgram.prg, shown in Listing 6, adds a function to the Project Explorer menu
that runs the main program for the project. This saves you having to select the Code tag and
scroll to find the correct startup program. It executes when the user clicks the menu button
because it’s an addin for the AfterCreateMenu method. As with AfterCreateShortcutMenu
handlers, the second parameter is a reference to a ProjectExplorerShortcutMenu object. In
this case, it calls the RunItem method of the Project Explorer form, passing it the path for
the main file of the project (the form’s oProject member contains a reference to the
ProjectEngine object for the selected project, and its oProject member contains a reference
to the open VFP Project object).

Listing 6. This AfterCreateMenu addin adds a function to the menu to run the main program for the project.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registr ation call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = 'After Create Menu'
 toParameter1.Active = .T.
 return
endif

* Add an item to the Project Explorer menu to run the main program for the project.

t uParameter2.AddMenuBar('R \ <un Main Program', ;
 'loForm.RunItem(loForm.oProject.oProject.MainFile)', ;
 'empty(loForm.oProject.oProject.MainFile)', ;
 '', ;
 tuParameter2.nBarCount - 1)
return .T.

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 43 of 46

I like to use a version numbering system which has as the last four digits the encoded date
of the build. This allows me to programmatically decode the version number to get the
build date, which can be used, for example, to determine whether a user is entitled to this
build if they did not renew their software maintenance (they’re entitled to any build up to
the date their maintenance lapsed). The addin shown in Listing 7, taken from
SetVersionNumber.prg, automatically sets the version number for the project whenever it’s
built because it’s an addin for the BeforeBuildProject method. The first parameter is a
reference to the VFP Project object, so this code sets the last four digits of its
VersionNumber property just before the project is built.

Listing 7. This BeforeBuildProject addin updates the project's version number when it's built.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = 'BeforeBuildProject'
 toParameter1.Active = .T.
 toParameter1.Name = 'Set version number on build'
 toParameter1.Order = 1
 return
endif

* This is an addin cal l, so do it.

lnJulian = val(sys(11, date())) - val(sys(11, {^2000 - 01- 01}))
lcJulian = padl(transform(lnJulian), 4, '0')
toParameter1.VersionNumber = left(toParameter1.VersionNumber, ;
 rat('.', toParameter1.VersionNumber)) + lcJulian
return .T.

The addin in Listing 8, taken from SetFont.prg, sets the font size when the Project Explorer
is started.

Listing 8. This addin changes the font size for Project Explorer.

lparameters toParameter1, ;
 tuParameter2, ;
 tuParameter3

* If this is a registration call, tell the addin manager which method we're
* an addin for.

if pcount() = 1
 toParameter1.Method = 'OnStartup'
 toParameter1.Active = .T .
 return
endif

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 44 of 46

* Set the font to the desired size

toParameter1.SetAll('FontSize', 12)

Other ideas

Here are some other ideas for addins:

¶ Additional actions on the selected item, such as backup or compare to another item
(for example, call BeyondCompare).

¶ Additional actions on the project: backup, zip files, etc.

¶ A function to show files in project folders that aren’t in the project and an option to
delete them individually or all.

¶ Drag and drop a table or field for rapidly coding table operations that use a list of
field names, such as INSERT INTO. This can leverage code written by Rick
Schummer in the Data Explorer.

¶ Show project statistics: number of classes, programs, reports, etc.

Ideas
Here are some ideas for future development of Project Explorer:

¶ Although most of the operational code is in operations classes, such as
ProjectExplorerSolution, ProjectEngine, and ProjectOperations, there is some code
in the form class, ProjectExplorerForm. Refactoring that code out would allow a
different UI to be substituted if desired.

¶ Speaking of refactoring, it’s possible that the ProjectOperations and ProjectSettings
classes could be merged into ProjectEngine to minimize the number of classes
needed.

¶ The Project Manager supports changing the font settings for the TreeView. That
could easily be done with Project Explorer’s TreeView but is more work for the
other controls since control spacing and form MinWidth and MinHeight are all
affected.

¶ Project hook methods could be called when items in a database are created,
modified, or removed.

¶ Currently only FoxBin2PRG is supported for binary to text conversion. A little work
is needed to support other converters. Project Explorer could also use the value of
_SCCTEXT as the location of the converter.

¶ Source control providers that integrate with VFP, such as SourceSafe and
SourceGear Vault, aren’t currently supported.

¶ Renaming a file and then reverting that change needs some work, as there can be a
lot to undo (especially renaming a table that belongs to a database container).

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 45 of 46

Summary
Project Explorer overcomes the many shortcomings of the VFP Project Manager. I’ve been
using it in my day-to-day development instead of the VFP Project Manager for many
months now. I look forward to any feedback you have when you start using it with your
projects.

I’d like to thank the beta testers for Project Explorer whose bug reports and enhancement
requests made it much better: Paul Mrozowski, Matt Slay, Rick Borup, Eric Selje, Phil
Sherwood, Mike Potjer, Matthew Olson, Hans-Peter Grözinger, and Lutz Scheffler.

Biography
Doug Hennig is a partner with Stonefield Software Inc. He is the author of the award-
winning Stonefield Database Toolkit (SDT); the award-winning Stonefield Query; the
MemberData Editor, Anchor Editor, and CursorAdapter and DataEnvironment builders that
come with Microsoft Visual FoxPro; and the My namespace and updated Upsizing Wizard in
Sedna.

Doug is co-author of VFPX: Open Source Treasure for the VFP Developer, Making Sense of
Sedna and SP2, the What’s New in Visual FoxPro series, Visual FoxPro Best Practices For
The Next Ten Years, and The Hacker’s Guide to Visual FoxPro 7.0. He was the technical
editor of The Hacker’s Guide to Visual FoxPro 6.0 and The Fundamentals. All of these books
are from Hentzenwerke Publishing (http://www.hentzenwerke.com). He wrote over 100
articles in 10 years for FoxTalk and has written numerous articles in FoxPro Advisor,
Advisor Guide to Visual FoxPro, and CoDe. He currently writes for FoxRockX
(http://www.foxrockx.com).

Doug spoke at every Microsoft FoxPro Developers Conference (DevCon) starting in 1997
and at user groups and developer conferences all over the world. He is one of the
organizers of the annual Southwest Fox and Southwest Xbase++ conferences
(http://www.swfox.net). He is one of the administrators for the VFPX VFP community
extensions Web site (http://vfpx.codeplex.com). He was a Microsoft Most Valuable
Professional (MVP) from 1996 through 2011. Doug was awarded the 2006 FoxPro
Community Lifetime Achievement Award (http://tinyurl.com/ygnk73h).

http://www.hentzenwerke.com/
http://www.foxrockx.com/
http://www.swfox.net/
http://vfpx.codeplex.com/
http://tinyurl.com/ygnk73h

Introducing Project Explorer

Copyright 2017, Doug Hennig Page 46 of 46

http://www.hentzenwerke.com/catalog/hackfox7.htm
http://www.hentzenwerke.com/catalog/newin7.htm
http://www.hentzenwerke.com/catalog/wnvfp8.htm
http://www.hentzenwerke.com/catalog/wnvfp9.htm
http://www.hentzenwerke.com/catalog/vfpbp10.htm
http://www.hentzenwerke.com/catalog/makingsos.htm
http://www.stonefieldquery.com/sdt.html
http://www.stonefieldquery.com
http://vfpx.codeplex.com/
http://www.swfox.net
http://www.foxrockx.com/seite.htm

	Introduction
	Installing Project Explorer
	A tour of Project Explorer
	Item properties
	Project properties
	Item organization
	Tags
	Category
	Using tags and categories

	Sorting and filtering
	Building
	Managing items
	Modifying
	Running
	Creating
	Adding
	Removing

	Managing solutions
	Version control
	Other functionality
	Project Explorer options
	Drag and drop
	Refreshing the TreeView
	Moving to a previous item
	Project hook support
	Invoking the project builder
	Unimplemented Project Manager features

	Inside Project Explorer
	Classes
	Files
	Running Project Explorer from Thor
	Project Manager bugs

	Addins
	Examples
	Other ideas

	Ideas
	Summary
	Biography

