
Displaying and Editing Child Records
Doug Hennig

This month’s article presents a grid class to display child records for a parent and a form class to

edit the selected child record.

I’m not exactly sure why, but in general, editing in a grid has never appealed to me. Grids are great for

displaying lists of records or for updating information in existing records (like a spreadsheet), but I’ve never

liked adding records or editing records that require controls like comboboxes in a grid. For displaying child

records of a parent, like outstanding invoices for a customer, a grid can’t be beat. However, if, like me, you

prefer to avoid using a grid to enter or edit those child records, what do you do?

 The approach I’ve taken has been with us since before VFP: having Add, Edit, and Delete buttons that

add a new child record or edit or delete the selected child record. Add and edit are similar: they bring up a

dialog with either a blank child record or the selected child record, allow the user to edit the values as

necessary, and then choose OK or Cancel to close the dialog and save or cancel the changes.

 Because I’ve done a lot of applications lately that use this style of interface, I’ve created some classes

that provide the features needed. The first is a grid class to display the child records and the second is a

form class to maintain a single child record.

SFParameterizedViewGrid
This class, which is based on SFGrid (our grid base class in SFCTRLS.VCX) and located in

SFCCTRLS.VCX, is used to simplify the display of child records for the current parent record. The key

behind this is that you create a parameterized view for the child table, with the WHERE clause looking

something like this: CHILD.PARENTID = ?vpParentID. vpParentID will contain the ID of the parent

record that you want child records for. Then, you’ll bind the view to an SFParameterizedViewGrid and tell

it what the name of the view parameter is and how to get its value. It’ll take care of requerying the view

whenever the form is refreshed (such as when the user moves to a different parent record).

 Let’s look at how this class was created. First, the following properties of SFParameterizedViewGrid

were set: RecordMark to .F. and ScrollBars to 2-Vertical (so the grid is more visually appealing), and

DeleteMark to .F. and ReadOnly to .T. so the user can’t make any changes directly in the grid. Next, three

custom properties were added: aParameters, which will contain an array of view parameter information;

cParameterName, a comma-delimited list of the parameters for the view; and cParameterSource, a comma-

delimited list of what to use as the source of values for the view parameters. Although usually you’ll only

have a single view parameter, multiple view parameters are supported by separating them with commas.

 The Refresh method requeries the view when we refresh the grid; if .T. is passed to this method (which

you could do if you call it manually, rather than when it’s called automatically when the form is refreshed),

it won’t requery the view. Here’s the code:

lparameters tlNoRequery

if not tlNoRequery

 This.Requery()

endif not tlNoRequery

 The custom Requery method does the actual work of requerying the view. It calls the custom

GetViewParameters method to populate the aParameters array with information about the view parameters,

then it processes this array. Each array row contains the name of the view parameter, the source of the value

for that parameter, and the former value for the parameter. If .T. is passed (meaning we should requery the

view whether we need to or not) or if the value of any view parameter has changed from its former value,

variables are created for each view parameter, they’re assigned the appropriate value, and the view is

requeried.

lparameters tlForce

local llRequery, ;

 lnParms, ;

 lnI, ;

 lcParmSource, ;

 luValue, ;

 luFormer, ;

 lcParmName, ;

 lcAlias

with This

* Ensure the aParameters array is populated. Set a flag

* that we may not have to requery the view.

 .GetViewParameters()

 llRequery = .F.

* For each view parameter, get the value of the parameter

* source and see if it's changed.

 lnParms = alen(.aParameters, 1)

 for lnI = 1 to lnParms

 lcParmSource = .aParameters[lnI, 1]

 if not empty(lcParmSource)

 lcParmName = .aParameters[lnI, 2]

 luValue = evaluate(lcParmSource)

 luFormer = .aParameters[lnI, 3]

 if tlForce or isnull(luFormer) or ;

 not luValue == luFormer

 .aParameters[lnI, 3] = luValue

 llRequery = .T.

 endif tlForce ...

 endif not empty(lcParmSource)

 next lnI

* If we need to requery the view, create variables for

* each view parameter and assign it to the view parameter

* value, then requery the view.

 if llRequery

 for lnI = 1 to lnParms

 lcParmName = .aParameters[lnI, 2]

 luValue = .aParameters[lnI, 3]

 local &lcParmName

 store luValue to (lcParmName)

 next lnI

 lcAlias = .RecordSource

 if cursorgetprop('SourceType', ;

 lcAlias) <> DB_SRCTABLE

 requery(lcAlias)

 endif cursorgetprop('SourceType', ...

 endif llRequery

endwith

 GetViewParameters, which is called from Requery, populates the aParameters array by parsing the

cParameterName and cParameterSource properties (these properties may contain information for a single

view parameter or comma-delimited lists of information). Note that it only does this the first time it’s called,

since the view parameters won’t change after that.

local lnParms, ;

 lnSStart, ;

 lnNStart, ;

 lnI, ;

 lnSPos, ;

 lnNPos, ;

 lcParmSource, ;

 lcParmName

with This

* We only need to do this if we haven't already.

 if empty(.aParameters[1])

* Ensure cParameterSource and cParameterName are valid

* and specify the same number of view parameters.

 assert not empty(.cParameterSource) and ;

 vartype(.cParameterSource) = 'C' and ;

 not empty(.cParameterName) and ;

 vartype(.cParameterName) = 'C' ;

 message 'SFParameterizedViewGrid.' + ;

 'GetViewParameters: cParameterSource and/or ' + ;

 'cParameterName not specified'

 assert occurs(',', .cParameterSource) = occurs(',', ;

 .cParameterName) ;

 message 'SFParameterizedViewGrid.' + ;

 'GetViewParameters: cParameterSource does not ' + ;

 'match cParameterName'

* Populate aParameters with the names of the view

* parameter sources and the view parameter names by

* parsing the comma-delimited cParameterSource and

* cParameterName properties.

 lnParms = occurs(',', .cParameterSource) + 1

 lnSStart = 1

 lnNStart = 1

 for lnI = 1 to lnParms

 if lnI = lnParms

 lnSPos = len(.cParameterSource) + 1

 lnNPos = len(.cParameterName) + 1

 else

 lnSPos = at(',', .cParameterSource, lnI)

 lnNPos = at(',', .cParameterName, lnI)

 endif lnI = lnParms

 dimension .aParameters[lnI, 3]

 .aParameters[lnI, 1] = ;

 alltrim(substr(.cParameterSource, lnSStart, ;

 lnSPos - lnSStart))

 .aParameters[lnI, 2] = ;

 alltrim(substr(.cParameterName, lnNStart, ;

 lnNPos - lnNStart))

 .aParameters[lnI, 3] = .NULL.

 lnSStart = lnSPos + 1

 lnNStart = lnNPos + 1

 next lnI

 endif empty(.aParameters[1])

endwith

 The AfterRowColChange method ensures that the form is refreshed when the record pointer is moved

because, as we’ll see, the status of some controls may depend on what record is selected in the grid.

lparameters tnColIndex

dodefault(tnColIndex)

Thisform.RefreshForm()

 Using an SFParameterizedViewGrid is easy: just drop it on a form, set RecordSource to the name of

the child view, setup the columns to display the appropriate fields from the view, and set cParameterName

and cParameterSource to the names of the view parameters and the source of their values. For example, if

the primary key for the parent table is PARENT.ID and the view parameter is vpParentID, you’d enter

“vpParentID” into cParameterName and “PARENT.ID” into cParameterSource. When the user moves to a

certain parent record, your form will likely use Thisform.Refresh to refresh the form’s controls. This will

cause SFParameterizedViewGrid.Refresh to fire, which will call the Requery method, which will requery

the view with the current value of the parent key.

 Let’s look at a concrete example. The sample files available on the Subscriber Downloads site include

a database called TEST that has two tables: CLIENTS and its child CONTACTS (individuals who work for

the client). The database also has a parameterized view, LVCONTACTS_FOR_CLIENT, that selects the

ID and NAME from CONTACTS for a given client ID (the view parameter is called vpClientID). The

CLIENTS form, a data entry form based on SFMaintForm (in SFFORMS.VCX), has an instance of

SFParameterizedViewGrid called grdContacts to display the name of each contact for the current client. I

simply dropped an SFParameterizedViewGrid on the form, set RecordSource to

LVCONTACTS_FOR_CLIENT (which I added to the DataEnvironment of the form and set

NoDataOnLoad to .T. so the user isn’t asked for the value of vpClientID when the view is first opened),

defined a column to display the NAME field from this view, and set cParameterName to vpClientID and

cParameterSource to CLIENTS.ID. When you run this form, you’ll see that when you click on the Next and

Previous buttons in the toolbar, the grid shows the appropriate contacts for the current client, without

having to write any code in this form.

SFAddEditForm
OK, now we can display child records. How do we add and edit them? In their own form, of course, which

will be very similar to other data entry forms. However, this form will only work with one child record at a

time, the one we’re adding or editing, so it’ll have OK and Cancel buttons and we’ll disable the record

navigation features.

 The form class for maintaining a single child record is SFAddEditForm, defined in SFFORMS.VCX

and based on SFMaintForm, our data entry form class. This class has two buttons, cmdOK (based on

SFOKButton in SFBUTTON.VCX) and cmdCancel (based on SFCancelButton, also in

SFBUTTON.VCX). It has the following properties overridden: WindowType is 1-Modal so the user has to

either save or cancel the record they’re on before they can do anything else; MinButton is .F. since it

doesn’t make sense to minimize a modal form; lCanAdd and lCanDelete are .F. because we want the New

and Delete buttons in the toolbar disabled; and cToolbarClass and cToolbarLibrary are empty because we

don’t want this form creating its own toolbar. This class has two custom properties: cPrimaryKey, which

will contain the name of the primary key tag for the child table, and lSaved, which is set to .T. if the user

clicks the OK button.

 The Init method expects to be passed three parameters: tuKey, which is the key for child record we

want to edit or 0 if we’re adding a new record; tuInsertValues, which contains values to be inserted into a

new record (often just the primary key for the parent, which is inserted into the foreign key field in the

child, but we’ll discuss this more later); and tcParent, a string that identifies the parent record to the user

(such as the client name). After executing the default behavior, Init gets the name of primary key tag for the

child table from the DBC (if it wasn’t filled in already). It then either calls AddRecord to create a new

record if tuKey is empty or finds that record in the table if not, and updates the Caption to show the “mode”

(add or edit) and tcParent (so it’ll look something like “New Contact for The Big Company”). Finally, it

calls the CheckSave method, which determines when cmdOK can be enabled. CheckSave is an abstract

method in the class; you’ll put code into a specific subclass or form instance that would, for example, only

enable the OK button when the minimum information has been entered.

lparameters tuKey, ;

 tuInsertValues, ;

 tcParent

local lcDatabase, ;

 lcPrimary

with This

* Do the default behavior.

 dodefault()

* Ensure things are set up correctly.

 assert not empty(tcParent) and ;

 vartype(tcParent) = 'C' ;

 message 'SFAddEditForm: parent name not passed'

* Determine the primary key tag for the table if necessary.

 if empty(.cPrimaryKey)

 .cPrimaryKey = dbgetprop(.cMainTable, 'Table', ;

 'PrimaryKey')

 assert not empty(.cPrimaryKey) ;

 message 'SFAddEditForm: no primary key for ' + ;

 .cMainTable

 endif empty(.cPrimaryKey)

* If the key wasn't specified, we're adding a new record.

 if empty(tuKey)

 .AddRecord(tuInsertValues)

 .Caption = 'New ' + .Caption + ' for ' + tcParent

 else

* If the key was specified, we're editing an existing

* record.

 = seek(tuKey, .cAlias, lcPrimary)

 .Caption = 'Edit ' + .Caption + ' for ' + tcParent

 endif empty(tuKey)

* Call the CheckSave method to enable or disable the OK

* button.

 .CheckSave()

endwith

 The AddRecord method of SFMaintForm is overridden in this class with simple code that accepts a

parameter and adds a blank record to the child table:

lparameters tuInsertValues

append blank in (This.cMainTable)

You’ll likely override this code in a subclass or form instance because, at a minimum, you’ll want to insert

the primary key for the parent into the foreign key field in the child.

 The Save method uses the default method of SFMaintForm, which does a TABLEUPDATE() in all

open tables and handles any errors that occur, but passes .T. to ensure that the form isn’t refreshed

afterward. Then, if the save was successful, it sets the custom lSaved property to .T. and releases the form.

lparameters tlNoRefresh

local llReturn, ;

 lcKey

with This

 llReturn = dodefault(.T.)

 if llReturn

 .lSaved = .T.

 .Release()

 endif llReturn

endwith

 The Cancel method, which is called if the user clicks on the form’s Close box or Cancel button, simply

uses the default behavior of SFMaintForm (which does a TABLEREVERT() in each open table) but passes

.T. so this method doesn’t refresh the form when it’s done.

lparameters tlNoRefresh

dodefault(.T.)

 There are a few other methods with code in this form. cmdOK.Click saves the record by calling

Thisform.Save and cmdCancel.Click cancels any changes by calling Thisform.Cancel (it also uses

DODEFAULT() to execute the default behavior of SFCancelButton, which is to release the form).

FirstRecord, LastRecord, PreviousRecord, NextRecord, IsThisFirst, and IsThisLast, all record navigation

methods, are overridden with a comment so they don’t execute if called. Unload returns the value of

This.lSaved so the calling form will know that, for example, it has to update itself because a new child

record was added.

 So, as you can see, we’ve simply customized the behavior of our data entry form class to specifically

handle adding or editing a single child record. Creating a form for maintaining a child table is easy. Simply

create the form from SFAddEditForm, add the child table (and any other tables desired) to the

DataEnvironment and place controls bound to the appropriate fields onto the form. Set the form Caption to

indicate what’s being maintained, put code into AddRecord to insert the desired values into the child table,

and put any code necessary into CheckSave to enable the OK button when appropriate (you’ll want to call

CheckSave from the AnyChange or Validation methods of the controls whose values determine when OK is

enabled).

 The CONTACTS form is an example of this. The Caption is “Contact” and Name is frmContacts.

AddRecord inserts the passed value, which it assumes is the primary key for the CLIENT record that this is

a child for, into the CLIENT field in the CONTACTS table.

lparameters tuInsertValues

insert into (This.cMainTable) ;

 (CLIENT) ;

 values ;

 (tuInsertValues)

 CheckSave ensures the user enters the name of the contact:

with This

 .cmdOK.Enabled = not empty(.txtName.Value)

endwith

 That’s it! Simple, huh? However, what if you need to insert more than just a single value into the child

table? In that case, I recommend creating a “parameter” object that contains properties for each of the

values to be inserted, pass it to the SFAddEditForm, and then pull those values out of the object and insert

them. For example, one SFAddEditForm-based form I created in a client’s application needed to insert both

a customer primary key and the ID for the current user into an activity child record for the customer. Here’s

a trick I used to handle this: I instantiated a object based on Custom, used the AddProperty method of this

object to create iContactID and iUserID properties, filled them with the appropriate values, then passed this

object to the activity form. Here’s the code in the AddRecord method of this form:

lparameters tuInsertValues

local liContactID, ;

 liUserID

liContactID = tuInsertValues.iContactID

liUserID = tuInsertValues.iUserID

insert into (This.cAlias) ;

 (CONTACTID, ;

 USERID) ;

 values ;

 (liContactID, ;

 liUserID)

return

Calling an SFAddEditForm
Now that we’ve created our child maintenance form, how do we call it from the parent? First, add buttons to

the parent form to add, edit, and delete child records (in the CLIENTS sample form, these buttons are

named cmdAdd, cmdEdit, and cmdDelete). The Refresh method of cmdAdd has the following code to

ensure the user can’t add a contact record if they don’t have a valid client record:

local lcTable

lcTable = Thisform.cMainTable

This.Enabled = not eof(lcTable) and not bof(lcTable) ;

 and not deleted(lcTable)

 The Refresh methods of cmdEdit and cmdDelete are similar to that of cmdAdd but ensure the user

can’t edit or delete a contact record unless they’re sitting on one:

local lcTable

lcTable = Thisform.grdContacts.RecordSource

This.Enabled = not eof(lcTable) and not bof(lcTable) ;

 and not deleted(lcTable)

 The Click methods of cmdAdd and cmdEdit are similar—they both call Thisform.EditContact—but

cmdEdit passes .T. to indicate we’re editing an existing record rather than adding a new one. Here’s the

code for EditContact:

lparameters tlEdit

local llSaved

do form CONTACTS with ;

 iif(tlEdit, lvContacts_For_Client.ID, 0), CLIENTS.ID, ;

 trim(CLIENTS.NAME) to llSaved

if llSaved

 This.grdContacts.Requery(.T.)

 This.grdContacts.Refresh(.T.)

endif llSaved

 This code runs the CONTACTS form, passing it either the ID of the current child record (if we’re

editing) or 0 (if we’re adding), the ID for the parent record, and the parent name. It expects a return value

from the form, indicating whether the user saved or not. If so, the contacts grid is requeried (with a

parameter passed to force it to do the requery; it normally wouldn’t because the parent record hasn’t

changed) and refreshed (with a parameter passed to tell it not to requery, since that was just done).

 Finally, the Click method of cmdDelete calls Thisform.DeleteContact, which has the following code to

delete the current child record (after confirming the deletion with the user):

with This

 if messagebox('Delete this contact?', 36, .Caption) = 6

 delete in lvContacts_For_Client

 .Save()

 endif messagebox('Delete this contact?' ...

endwith

 Thus, a little work is required in the parent form: adding three buttons and two custom methods for

each child grid. I’ve created a form in a client’s application that has 10 different child grids (in a pageframe,

obviously), and it was only a couple of hour’s work to get it all working.

Conclusion
If, like me, you prefer editing child records in their own form rather than in a grid, you might find the

classes and techniques presented in this article useful.

Doug Hennig is a partner with Stonefield Systems Group Inc. in Regina, Saskatchewan, Canada. He is the author of

Stonefield’s add-on tools for FoxPro developers, including Stonefield Database Toolkit and Stonefield Query. He is

also the author of “The Visual FoxPro Data Dictionary” in Pinnacle Publishing’s “The Pros Talk Visual FoxPro”

series. Doug has spoken at the 1997, 1998, and 1999 Microsoft FoxPro Developers Conferences (DevCon) as well as

user groups and regional conferences all over North America. He is a Microsoft Most Valuable Professional (MVP).

He can be reached at dhennig@stonefield.com.

mailto:dhennig@stonefield.com

