DBCX 2
Reference Guide

Doc-To-Help Standard Manual
License Agreement
All source code and documentation contained in DBCX.ZIP was developed by the developers at the companies listed above. You may use, modify, copy, distribute, and demonstrate any source code, example programs, or documentation contained in DBCX.ZIP freely without copyright protection. If you make use of DBCX, either directly, or indirectly by subclassing DBCX or any of its objects in a commercial software package, you must distribute DBCX.ZIP unmodified. For the purposes of this agreement a commercial software package is defined as any software package that is sold to more than one individual, company, corporation or other entitity. You may incorporate DBCX documentation into the documentation of any commercial product that uses DBCX provided all acknowledgements of authors and other contributors are left complete in tact.

Warranty Disclosure: No Warranty!

THE AUTHORS of DBCX RELEASE TO THE PUBLIC DOMAIN ALL CLAIMS TO ANY RIGHTS IN THIS PROGRAM AND DOCUMENTATION, SUBJECT TO THE RESTRICTIONS STATED ABOVE. the authors make no warranty of any kind, express or implied, including without limitation, any warranties of merchantability and/or fitness for a particular purpose. In no event will the authors be liable to you for any damages, including lost profits, lost savings, or other incidental or consequential damages arising from the use of, or inability to use, this software and its accompanying documentation, even if the authors have been advised of the possibility of such damages

Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless otherwise noted.

Software design and implementation:
Doug Hennig, Stonefield Systems Group Inc.

Toni M. Feltman, F1 Technologies

W. Michael Feltman, F1 Technologies

Paul Bienick, Flash Creative Management.

Y. Alan Griver, Flash Creative Management

Marie Hooper, Micromega Systems, Inc.

Andy Neil, Micromega Systems, Inc

Alan Schwartz, Micromega Systems, Inc

Documentation:
Doug Hennig, Stonefield Systems Group Inc.

Toni M. Feltman, F1 Technologies

W. Michael Feltman, F1 Technologies

Y. Alan Griver, Flash Creative Management

Microsoft, MS, and FoxPro are registered trademarks and Rushmore, Microsoft Word for Windows, Windows and Windows NT are trademarks of Microsoft Corporation.

Foxfire!® is a registered trademark of Micromega Systems, Inc.

FoxExpress and Visual FoxExpress are trademarks of F1 Technologies.

Stonefield Database Toolkit and Stonefield Query are trademarks of Stonefield Systems Group Inc.

The Visual FoxPro 3 Codebook by Y. Alan Griver, ISBN 0-7821-1648-5, Copyright 1995 SYBEX Inc.

This publication was produced using Microsoft Word 97.

About the Authors

Stonefield Systems Group, Inc.

1112 Winnipeg Street, Suite 200

Regina, SK, Canada S4R 1J6

Phone: (306) 586-3341

Fax: (306) 586-5080

Email: dhennig@stonefield.com
Web: www.stonefield.com

Stonefield Systems Group Inc. specializes in developing add-on tools for Microsoft FoxPro. Stonefield Database Toolkit is a database management tool for Visual FoxPro. It has three aspects: it provides tools to manage the Visual FoxPro data dictionary, it allows you to interactively define extended properties for data objects, and it includes a class library that provides services to applications such as recreating indexes, repairing corrupted table headers, and updating table structures at client sites. Stonefield Query is an end-user querying tool you can add to your applications.

F1 Technologies

335 N. Superior

Toledo, OH 43604

Phone: (419) 255-6366

Fax: (419) 255-6371

F1 Technologies, formerly known as Neon Software, is a leading provider of development technology for Microsoft Visual FoxPro and FoxPro 2.6. Over the past seven years Neon Software has built a solid reputation as an innovative provider of top-quality FoxPro products and services to the FoxPro community. Founded in 1990 to help businesses utilize FoxPro, Neon has enjoyed a solid reputation for delivering the best application development tools for the FoxPro community.

F1 Technologies, formed in 1997 to provide developers with a broader scope of application development technology, will continue to develop, support and market the Neon Software product line while developing new products and expanding its training and consulting services.

Flash Creative Management

Continental Plaza

433 Hackensack Avenue, 12th Floor

Hackensack, NJ 07602

Phone: (201) 489-2500

Fax: (201) 489-6750
Flash Creative Management is a three time Inc. 500 company that specialized in business and client/server database training and consulting. The creators of the popular Codebook framework for Visual FoxPro, Flash is committed to achieving repeatable successes in large scale application development efforts.

Micromega Systems, Inc

832 Baker Street

San Francisco, CA 94115

Phone: (415) 346-4452

Fax: (415) 346-6804

Micromega Systems, Inc., of San Francisco CA is one of the preeminent FoxPro application development companies in the US. Best known for its award-winning query and report writing add-on for FoxPro -- Foxfire!, Micromega also builds custom applications for business clients and is a top west coast source for training in Visual FoxPro, FoxPro and related tools.

Contents

iAbout the Authors

Contents
iii
What is DBCX and Why Use It?
1
DBCX - An Overview
1
The DBCX Model
1
The Registry Table
2
The DBCX Manager Class
3
Extension Manager Classes
4
How DBCX Extends a Database
4
The Core Properties Manager
5
Differences Between DBCX Version 1 and 2
5
The DBCX Manager Class
8
Introduction
8
Properties of the DBCX Manager Class
8
Caption
8
DataSession
8
aErrorInfo
8
aManagers
9
cCurrentDBC
9
cObjectName
9
cObjectType
9
cPropCursorName
10
cRegistryName
10
cRegistryPath
10
cRegistryTag
10
cValidateObjectName
10
cValidateObjectType
10
cVersion
10
lDebugMode
11
lNotify
11
lShowStatus
11
Methods of the DBCX Manager Class
11
AddDatabaseToObjectName
12
AddRow
12
CloseOpenedCursors
13
CreateDBCXMeta
13
CreatePropCursor
13
DBCXCreateProp
14
DBCXDeleteProp
14
DBCXDeleteRow
15
DBCXGetAllObjects
15
DBCXGetProp
16
DBCXGetRowProp
17
DBCXNotify
18
DBCXNotifyOneProperty
19
DBCXSetProp
19
DBCXSetRowProp
20
DBGetDBCKey
21
Destroy
21
Error
21
FindProperty
22
GetCoreMgrID
22
GetDatabase
23
Init
23
InstantiateManager
24
JustFName
24
NewID
25
OpenDBCXMeta
25
RegisterCoreMgr
25
RegisterManager
25
ResetError
26
SetDatabase
26
Show
27
ShowStatus
27
StripDatabase
28
Validate
28
Warning
29
Changes From the Previous Release of DBCX
29
The Base Manager Class
31
Introduction
31
Properties of the Base Manager Class
31
cDBC
31
cDBCNameField
31
cDBCXAlias
31
cDBCXTag
31
cObjectNameField
32
cObjectTypesHandled
32
cPrefix
32
cProcessField
32
cProductName
32
cVersion
32
lUICreated
32
Methods of the Base Manager Class
32
AddRow
32
CheckDBCXMeta
33
ConvertDBCXMeta
33
CreateDBCXMeta
34
DBCXCreateProp
34
DBCXDeleteProp
35
DBCXDeleteRow
35
DBCXGetProp
35
DBCXGetPropList
36
DBCXGetRowProp
37
DBCXNotify
37
DBCXPackMeta
38
DBCXRemoveOrphan
38
DBCXSetProp
38
DBCXSetRowProp
39
Destroy
39
EnsureOneObject
40
Error
40
FindObject
40
FlagUnprocessed
41
GetDataName
41
GetObjectName
42
GetParentName
42
GetPropertyName
43
OpenCursor
43
OpenDBCXMeta
44
ShowUI
44
Validate
44
ValidateConnection
45
ValidateDatabase
45
ValidateField
46
ValidateIndex
46
ValidateRelation
47
ValidateTable
47
ValidateView
48
Warning
48
Changes From the Previous Release of DBCX
49
The Core Properties Manager
50
Introduction
50
Meta Data Structure
50
Properties of the Core Properties Manager Class
52
cDBCNameField
52
cDBCXAlias
52
cObjectNameField
52
cPrefix
52
cProcessField
52
cProductName
52
Methods of the Core Properties Manager Class
53
Changes From the Previous Release of DBCX
53

What is DBCX and Why Use It?

DBCX - An Overview

Visual FoxPro (VFP) provides a database container (DBC) used to track certain attributes of data objects (such as tables and views). As in the case of FoxPro 2.6, many third party developers and consultants see a need to add their own attributes (for instance, structural information or report column headers) to the standard ones supported by VFP.

DBCX is a data dictionary extension scheme that allows multiple products to enhance the DBC without “stepping on each other’s toes”. It allows each developer to decide where and how the extended attributes will be stored by making extensive use of VFP’s object oriented capabilities and polymorphism.

As DBCX was being designed, it became apparent that many common attributes were handled by each third party product. The common subset of these attributes are called the “Core” extensions.

Please note that although this specification does mention a number of products by name, it is not meant to exclude any other products. These companies have committed to using this specification, and as such are provided as “real world” examples of how this specification would work.

The DBCX Model

The model for DBCX starts with the idea that every application has a registry table which contains a list of third party products which require their own extended data dictionary attributes and are registered for use with this application. Of course, multiple applications can use the same registry table if they all use the same suite of third party products. An unlimited number of third party products can be added to the registry table and can work together.

A DBCX manager class is used as a common interface to all registered third party classes. Anything requiring access to an extended attribute will access the attribute through the manager class, which automatically accesses the proper third party class managing that attribute. Thus, the DBCX manager is the only item that will directly access the extended attributes. The developer need not care what product manages the extended attributes, or even how they’re stored.

The Registry Table

The registry table is called DBCXREG.DBFxe "DBCXREG.DBF" (although since this name is stored as a property of the DBCX manager class, it could have a different name if necessary). There is one copy of this table per application, although it could also be shared between applications if necessary. DBCXREG contains one record for each manager that manages the database extensions for an application. You can have as many copies of DBCXREG as you need, but can only use one for any one instance of the DBCX manager class.

The structure of DBCXREG.DBFxe "DBCXREG.DBF" is shown below.

Field
Type
Size
Purpose

cProdName
C
40
The name of the product the extension manager is associated with. This field is larger than the previous release of DBCX.

mLibPath
M
4
The path to the extension manager’s class library, relative to the location of DBCXREG.DBFxe "DBCXREG.DBF".

cLibName
C
12
The name of the extension manager’s class library. This may be .VCX or .PRG.

cClassName
C
30
The name of the class in the class library.

cObjName
C
30
The name of the object to create when the extension manager’s class is instantiated. If this field is empty, the default is “o” + cClassName.

iLastID
I
4
The last DBCX ID issued (only used in the system record; see below).

tLastUpdt
T
8
The date and time the record was last updated.

There are two indexes on DBCXREG.DBF:

Tag Name
Index Expression
Type
Filter

Deleted
DELETED()
Regular

cProdName
UPPER(cProdName)
Candidate
NOT DELETED()

The following fields were removed from the previous release of DBCX:

mDBCPath

cDBCName

cVersion

mDBCXPath

cDBCXName

cDBCXAlias

lDefault

There are two types of records in DBCXREGxe "DBCXREG.DBF":

· The first record is the “system record” (the cProdName field contains “SYSTEM RECORD”). Its purpose is to contain the next available ID number (the iLastID field) for database objects. This value is not specific to a particular DBC; all DBCs managed by a particular set of meta dataxe "meta data" tables share this value, so each data item in each DBC has a unique DBCX ID.

· The Core Manager record manages the common “Core” properties. It is automatically registered by the DBCX manager class.

· Other managers each have their own records in DBCXREG if you are using the products that provide these managers. The following table shows an example of the contents of DBCXREG when the Core Properties, Stonefield Database Toolkit, and Visual FoxExpress managers are registered. This table assumes the meta dataxe "meta data" tables are all in the same directory (mDBCXPath is empty, so each manager’s tables are in the same directory as DBCXREG.DBFxe "DBCXREG.DBF") and the class libraries for the different managers are each in their own directory.

Field Name
Record #1
Record #2
Record #3
Record #4

cProdName
SYSTEM RECORD
Core Manager
Visual FoxExpress
Stonefield Database Toolkit

mLibPath

\stonefield\sdt\source\
\vfe\common30\libs\
\stonefield\sdt\source

cLibName

DBCXMgr.vcx
FeMgr.vcx
SDT.vcx

cClassName

CoreMgr
FeMgr
SDTMgr

cObjName

oVFEMgr

iLastId
503

tLastUpdt
08/22/95 11:29:34 AM
08/22/95 11:29:34 AM
08/22/95 11:29:34 AM
08/22/95 11:29:34 AM

When you instantiate the DBCX manager class, you can specify that it should create a copy of DBCXREG.DBFxe "DBCXREG.DBF" (if it doesn’t already exist for the current application) and add a record for the Core Properties manager.

The DBCXxe "DBCX" Manager Class

DBCXMgrxe "MetaMgr" is the name of the DBCXxe "DBCX" manager class. This class is defined in DBCXMGR.VCXxe "DBCXMGR.VCX". You instantiate it like any other class. Here’s an example:

set classlib to DBCXMGR

oMeta = createobject('DBCXMgr')

The easiest way to think of DBCXMgrxe "MetaMgr" is as a conductor. Many of the methods in DBCXMgr merely call methods in the “real” extension managers.

When DBCXMgrxe "MetaMgr" is instantiated, its Init() method opens DBCXREG.DBFxe "DBCXREG.DBF" (actually, the name of the table stored in the cRegistryName property, which is DBCXREG.DBF by default). It looks in DBCXREG for all installed managers, and uses AddObject() to add an instance of each manager to itself. The Init() of each extension manager is fired as it’s instantiated and it generally opens its own meta dataxe "meta data" tables (DBCXMgr has no tables of its own other than DBCXREG). DBCXMgr.Init() also calls a method in each manager that adds all of the properties maintained by that manager (basically, a list of the fields in its extension table preceded by a unique prefix used by the manager) to a cursor called DBCXPROPS. Thus, after its Init() is done, oMeta will contain one object for each registered manager, and the following tables will be open: the DBCX registry table, a cursor containing all the properties maintained by all the managers, and one table (at least) for each manager. DBCXMgr use a private datasession, so these tables aren’t directly visible to other forms or objects.

DBCXMgrxe "MetaMgr" can be instantiated with three parameters passed to its Init() method. The first should either be True or False, depending on whether you want “debug” mode turned on. Debug modexe "DBCX:debug mode" displays useful debugging messages when something goes wrong, but isn’t really suitable for a production environment. The second parameter is the path to the DBCXREG table. This is useful if DBCXREG isn’t in your VFP path or current directory. The third parameter should be True if you want DBCXMgr to automatically create the DBCXREG table if it doesn’t exist and add the CoreMgr record to it. Here’s an example of instantiating DBCXMgr with debug mode turned off and telling it to look in the METADATA subdirectory for the meta dataxe "meta data" tables:

oMeta = createobject('DBCXMgr', .F., 'METADATA\')

Extension Manager Classes

In addition to DBCXMgrxe "MetaMgr", DBCXMGR.VCXxe "DBCXMGR.VCX" contains the BaseMgr class. BaseMgrxe "BaseMgr" is never instantiated directly, but is instead subclassed to create extension managers. BaseMgr contains the minimum properties and methods necessary for an extension manager. A manager subclass will probably add properties and methods to the base set, and may even override some of the base methods if necessary. We’ll look at the Core Properties manager class, which is subclassed from BaseMgr, in a moment.

How DBCX Extends a Database

DBCXMgrxe "MetaMgr" itself has no extended attributes for a DBC. Instead, each extension manager maintains a set of attributes, each being stored in a field in the manager’s meta dataxe "meta data" table. Each record in the meta data table is linked to the appropriate record in the DBC through the database name, record type, and object name.

You can find the value of a given extended attribute for any database object by calling the DBCXGetProp()xe "DBCXGetProp()" method in DBCXMgrxe "MetaMgr". You specify the name and type of the object (similar to how you specify it to the VFP DBGETPROP() function) and the name of the property you wish to obtain. The property name can either be the “long” name of the property or the prefix for a given manager and the name of the field the property is stored in. For example, to get the Caption property, which is stored in the cCaption field of the Core Properties manager’s table (which has a prefix of CB), for the CUSTOMER table, use either:

? oMeta.DBCXGetProp('customer', 'Table', 'Caption')

or:

? oMeta.DBCXGetProp('customer', 'Table', 'CBcCaption')

DBCXGetProp()xe "DBCXGetProp()" looks in the DBCXPROPS cursor to see which of its manager objects maintains that property, then calls the DBCXGetProp() method of that manager to do the actual work. Typically, a specific manager won’t override the BaseMgrxe "BaseMgr"’s DBCXGetProp() method, because it’s pretty simple:

· Find the record in the meta dataxe "meta data" table for the object type and name.

· Strip the prefix off the property name to obtain the name of the field containing the desired attribute.

· Return the contents of that field.

Once a DBCXMgr method has been called specifying an object name and type, you can call other methods for the same object without having to specify the object name and type each time. For example, to change the Caption property for the same table, use:

oMeta.DBCXSetProp('Caption', 'Customer Table')

To create a new property, use the DBCXCreateProp()xe "DBCXCreateProp()" method. This method requires the name of the property (including the manager prefix), the long name, the name of the manager object to add the property to (the manager object name is usually “o” plus the name of the manager class defined in the registry, but this name can be overridden by the cObjName field in DBCXREGxe "DBCXREG.DBF"), and optionally the property type (the default is Memo), size (the default is 10), and number of decimals (the default is 0). Here are a couple of examples:

oMeta.DBCXCreateProp('CBMyNewProp', 'oCoreMgr', ;

'MyNewPropertyName')

oMeta.DBCXCreateProp('SDTMyTestProp', 'oSDTMgr', ;

'MyTestPropertyName', 'C', 2)

The first example creates a Memo field called MyNewProp in the Core Properties manager’s meta dataxe "meta data" table, and the second creates a 2 byte Character field called MyTestProp that the SDT manager handles.

The Core Properties Manager

The Core Properties manager (the class CoreMgrxe "CdbkMgr" contained in DBCXMGR.VCXxe "CDBKMGR.VCX") provides the “common” set of extended attributes. It defines extensions for the structural information of tables and indexes, as well as some other attributes. It stores its extensions in a table called COREMETA.DBFxe "CDBKMETA.DBF". Since CoreMgr is considered the “common” manager, third party developers should not duplicate the attributes it maintains, but should maintain their own.

The Core Properties manager uses “CB” as its prefix, so when you want to use DBCXGetProp()xe "DBCXGetProp()" or DBCXSetProp()xe "DBCXSetProp()" to get or change the value of a CoreMgr property, you can optionally specify the field name with “CB” as the prefix. For example, use “CBcCaption” to get the caption for a table.

Note: the Core Properties manager fills the role provided by the Codebook manager in the previous release of DBCX.

Differences Between DBCX Version 1 and 2

The following outlines the major differences between DBCX versions 1 and 2:

· DBCX 2 no longer requires DBCX ID values to link DBC records to meta data records. In fact, the DBC is no longer altered (in version 1, the DBCX ID value was stored in the USER memo field of the DBC). Instead, objects are located in meta data tables using the database name, object name, and object type. This provides several advantages, including improved performance (since the DBC doesn’t have to be opened as a table every time you want to access a property in the meta data tables), avoiding synchronization problems between the DBC and meta data tables that sometimes occurred in DBCX 1, and the ability to store records for non-DBC items in the meta data tables, such as free tables or user-defined (virtual) fields.

· Because the DBCX ID is no longer required, many methods were rewritten to not require a DBCX ID parameter but to use parameters as similar to their VFP counterparts (such as DBGETPROP) as possible. The most obvious examples of these are DBCXGetProp and DBCXSetProp.

· All DBCX methods accepting an object name now support the database name to be included as part of the object name.

· All DBCX methods accepting a property name now accept a long name for the property. Property names are first looked up in the DBCX properties cursor by long name, then by property name if the long name doesn’t exist. This means you no longer have to specify the manager prefix and field name for the property name. For example, “Caption” can be used rather than “CBcCaption”. Each extension manager is responsible for defining its own long names and ensuring they don’t collide with names provided by other extensions. A side benefit is also provided: properties can be mapped from one manager to another. For example, the Stonefield Database Toolkit Caption property has been replaced by the Core Properties manager Caption property. However, by specifying “SDTCaption” as the long name and “CBcCaption” as the property name, code referencing the former SDTCaption property will automatically obtain the CBcCaption property.

· Several fields were removed from DBCXREG.DBF. They stored values such as the name of the meta data table managed by each manager. Since this information is stored in properties of the extension manager classes, there’s no need for these values in the DBCX registry table.

· The name of the DBCX manager class was changed from MetaMgr to DBCXMgr. MetaMgr is now a subclass of DBCXMgr whose methods accept the same parameter lists as the previous version of DBCX. Thus, you don’t have to change any existing code using DBCX; you can still instantiate MetaMgr and call its methods with the same parameters as before. MetaMgr translates the older parameters into newer ones and passes them to the appropriate method in DBCXMgr.

· DBCXMgr and BaseMgr now have CreateDBCXMeta methods that create the meta data tables used by DBCX. Formerly, these tables had to be created manually or using a third-party tool such as Stonefield Database Toolkit or Visual FoxExpress. DBCXMgr.Init now accepts a third parameter which, if True, automatically creates DBCXREG.DBF if it doesn’t exist, registers the Core Properties manager, and creates COREMETA.DBF.

· DBCXMgr now has a RegisterManager method to provide programmatic registry of extension managers. Formerly, records had to be manually added to DBCXREG.

· DBCXMgr uses constants defined in DBCXREG.H for all strings displayed to the user. This makes translation of these strings into other languages much easier.

· DBCXMgr is now based on the VFP Form class rather than Custom. This allows DBCXMgr to have its own private datasession so not to interfere with other datasessions (although MetaMgr uses the default datasession so its behavior is the same as the previous version of DBCX). The drawback of this approach is that you must specify which database each object belongs to when you call DBCXMgr methods, either by specifying the database name as part of the object name (<database>!<object>) or setting the current database in DBCXMgr with the new SetDatabase method.

· Another drawback to DBCXMgr having its own private datasession: DBCXGetProp and DBCXGetRowProp can no longer evaluate expression property values (that is, values starting with “=”), since the expression likely involves tables open in another datasession. Any code calling these methods will have to evaluate these expressions itself.

· The DBCXNotify method was rewritten to be more straightforward and provide for easier communication of property changes between extension managers.

· The Validate method is much faster than before because it processes entire cursors (tables and views) at a time rather than treating each field and index as separate objects and rerunning the same code over and over. It also now supports granular validation: you can validate a single table or field rather than the entire database each time.

· Error and warning handling have been improved. In addition to displaying a message to the user (optionally in the case of warnings, depending on whether DBCXMgr is in debug mode), a new aErrorInfo property is populated with information about the error or warning. Also, an option to cancel is provided. If the new lSuppressErrors property is True, error messages are not displayed (similar to warning messages not displayed if lDebugMode is False).

· DBCXMgr remembers the last object name and type referenced, so subsequent method calls referencing the same object can leave these parameters out if desired.

· A new DBCXMgr DBCXGetAllObjects method populates an array with all data items having a certain property set to a particular value.

· The Codebook manager was replaced by the Core Properties manager. Several properties that were managed by the Codebook manager are no longer managed by the Core Properties manager since they aren’t really “core” properties, such as tool tip text, picture clauses, etc. Several new properties were added that provide a complete set of structural information, including collate sequence, code page, memo block size, and caption. The Core Properties manager will automatically convert an existing CDBKMETA.DBF to its equivalent COREMETA.DBF the first time it’s instantiated.

· BaseMgr now has a cObjectTypesHandled property that indicates what object types are managed by a particular extension manager. This allows some managers to focus only on those type of data items they are concerned with (for example, Stonefield Database Toolkit doesn’t do anything with relations, so that manager might ignore relation records in its meta data table).

· Print and Show properties functionality was removed.

The DBCX Manager Class
Introduction

The name of the DBCX Manager Class is DBCXMgr which is located in DBCXMGR.VCX. Issuing a CREATEOBJECT() instantiates the DBCX Manager class. It then looks for DBCXREG.DBF, creates members objects from each installed third party class, and compiles a list of properties from each of the managers.

We highly recommend keeping only one copy of DBCXMGR.VCX on your disk to ease upgrades when they become necessary.

DBCXMgr is based on the VFP Form base class. It uses DBCXMGR.H as its include file; this file contains constants (whose names all start with “cc”) for strings that may be displayed to the user, providing an easy mechanism for translating these strings into other languages.

A subclass of DBCXMgr called MetaMgr is provided for backward compatibility with application code written for the previous version of DBCX. There is no need to use this class with new code.

Properties of the DBCX Manager Class

Caption

Set in the Property Sheet to “DBCX Manager”.

DataSession

Set in the Property Sheet to 2-Private. Note: MetaMgr uses the default datasession so its behavior is the same as the previous version of DBCX.

aErrorInfo

This property array contains information about warnings and errors that may have occurred. A warning is something that was detected, such as a parameter not passed or containing an invalid value. An error is a VFP error that was trapped by the Error method of DBCXMgr.

This array consists of one row per warning or error, and the same column structure as arrays created with AERROR(), except it has an eighth column containing the name of the method where the warning or error occurred and a ninth column for the line number. Warnings have 0 for the first element (the error number), an appropriate message for the second, the name of the method for the eighth, 0 for the ninth, and the remainder .NULL. aErrorInfo is populated for errors using AERROR(), with the method and line number added in the eighth and ninth columns.

aErrorInfo is populated from the Warning and Error methods, and is cleared with the ResetError method.

This property is new in this version of DBCX.

aManagers

This property array holds the names of all of the instantiated extension managers. It’s populated by the InstantiateManager method as each manager is instantiated, and is used by any method needing to perform some action for each manager. This property is public because outside code may want to query the array to determine if a particular manager is instantiated or not. The array consists of three columns: the name of the extension manager is in the first column, the name and path of the library the manager is defined in is in the second column, and the third column contains True if the manager is based on the DBCX 2 version of BaseMgr.

cCurrentDBC

The default database container. This property is used if a method is passed an object name but no database is specified as part of the object name (using the syntax <database>!<object name>). An application using DBCX should either set this property using the SetDatabase method or specify the database name whenever an object name is used. The reason this is required is that DBCXMgr is based on a Form with a private datasession, which means it doesn’t have the same selected database as any code which calls it, so it cannot use the current database as a default.

cObjectName

The last database object accessed by any method. This protected property is automatically changed by anything accepting an object name parameter, such as DBCXGetProp() and DBCXSetProp(). The advantage of this property is that subsequent calls to these methods can leave out the object name parameter after the first call. For example:

oMeta.DBCXGetProp('mydata!customer.company', 'Field', ;

'Caption')

oMeta.DBCXGetProp('Size')

oMeta.DBCXGetProp('Decimals')

This property is new in this version of DBCX.

cObjectType

The last database object type used by any method. This protected property is automatically changed by anything accepting an object type parameter, such as DBCXGetProp() and DBCXSetProp(). The advantage of this property is that subsequent calls to these methods can leave out the object type parameter after the first call. See cObjectName for an example. This property is new in this version of DBCX.

cPropCursorName

The name of the cursor that holds master list of DBCX properties. This cursor contains the following fields:

Field Name
Description

cProperty
The property name.

cObject
The name of the object that manages the property.

cLongName
A descriptive name for the property.

cProdName
The name of the product that manages the property.

cReference
Additional reference information.

Records are added to this cursor in the DBCXGetPropList method of individual extension managers. At a minimum, the fields cProperty and cObject must be filled in by the extension manager. The Base Manager fills in the fields cProperty, cObject, cLongName, and cProdName.

This default value for this property is “DBCXProps.”

cRegistryName

The name of the DBCX Registry Table. By default, this is “DBCXReg” and should not be changed.

cRegistryPath

The path to the DBCX Registry Table. This can be passed as the second parameter to DBCXMgr. This allows multiple registries to exist on disk and tell DBCX which one to use.

cRegistryTag

The name of the master index tag in the registry table. This default value for this property is “cProdName.”

cValidateObjectName

The name of the object currently being validated. This property can be used by an error handler to determine which object what as being processed and perhaps handle the problem.

cValidateObjectType

The type of the object currently being validated.

cVersion

The version number of the class. The existence of this property can be used to determine if the instance of DBCXMgr is version 2 or later, since this property didn’t exist in previous versions of DBCX.

lDebugMode

This logical property is a debug mode indicator. If this property is set to True, messages will be displayed to indicate any problems. If True is passed as the first parameter to the DBCXMgr, this property will be automatically set to True.

lErrorOccurred

This logical property is set to True by the Error method. It can be used to detect when an error occurred.

lNotify

This logical protected property is set to True while DBCXNotify is operating and False otherwise. This prevents a loop where DBCXSetProp calls DBCXNotify, which calls DBCXSetProp, which calls DBCXNotify, and so on.

lShowStatus

This logical property determines if the ShowStatus method displays progress during the execution of methods that may take a long time, such as the Validate method.

lSuppressErrors

If this logical property is True, the Error method doesn’t display an error message (errors are still logged in aErrorInfo, however). This is usually only set to True when some code that might cause an error is used, and the code will handle the error itself rather than having an error message displayed.

nDataSessionID

DBCXMgr saves its DataSessionID property into the custom nDataSessionID property in its Init method. Because some extension managers may temporarily change datasessions, which causes DBCXMgr’s DataSessionID to change, storing the former value allows it to be changed back.

Methods of the DBCX Manager Class

Some methods can accept object name and type parameters. In general, object names and types are specified using the same syntax as VFP uses for functions such as DBGETPROP().

The following are the valid values for an object type:

· Database

· Table

· Connection

· View

· Field

· Index

· Relation

An object name must be in the following format:

· If the object type is “Database”, the object name should be the name of the database (for example, using the DBC() function).

· If the object type is “Table”, “Connection”, or “View”, the object name should be the name of the table, connection, or view.

· If the object type is “Field”, the object name should be <Table Name>.<Field Name>

· If the object type is “Index”, the object name should be <Table Name>.<Tag Name>

· If the object type is “Relation”, the object name should be <Parent Table>.<Parent Tag>,< Child Table>.<Child Tag>

The object name can include the database the object belongs to as a prefix using the following syntax: <Database Name>!<Object Name>. Non-database objects, such as free tables, should be specified as !<Object Name> to indicate they do not belong to any database.

AddDatabaseToObjectName

Returns the object name with the database included.

Syntax

object.GetObjectName(cObject, cObjectType)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Character, the object name with the database added if necessary.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

AddRow

Calls each extension manager’s AddRow method when an object is added to the meta data.

Syntax
object.AddRow(cObject, cObjectType)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, True if all the extension’s AddRow methods return True, otherwise False.

Method Status
Public both because some BaseMgr methods call it and it can be used to add non-validating objects (such as virtual fields) to the meta data.

Remarks
The parameter list for this method has changed from the previous release. However, since this method was never previously called directly, that should not be a concern. This method calls each extension manager’s AddRow method using the same syntax as the previous release, thus maintaining backward compatibility with older managers.

CloseOpenedCursors

Closes any cursors opened in a method. Before any cursors are opened, a “snapshot” array of the currently open cursors should be taken using AUSED(). This array is then passed to CloseOpenedCursors().

Syntax
object.CloseOpenedCursors(aUsed)

Arguments
aUsed

An array of cursors opened when the snapshot was taken (must be passed by reference).

Return Types
Logical, always True.

Method Status
Public only because some BaseMgr methods call it, although this method could be used as a utility function by other code if desired.

Remarks
This method is new in this version of DBCX.

ConvertDBCXMeta

Converts the structure of the DBCX registry table to the latest structure.

Syntax
object.ConvertDBCXMeta()

Return Types
Logical, True if the conversion was successful.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

CreateDBCXMeta

Creates the DBCX registry table and populates it with the “system record”. This method also calls the RegisterManager method to automatically register and instantiate the Core Properties manager (CoreMgr class). This method is called from the Init method of DBCXMgr if the registry table does not exist and DBCXMgr is called in “auto create” mode (True is passed for the lAutoCreate parameter); see the documentation for the Init method.

Syntax
object.CreateDBCXMeta()

Return Types
Logical, True if the registry table was created and the Core Properties manager registered and instantiated.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

CreatePropCursor

Creates and populates the DBCX properties cursor (whose name is stored in the cPropCursorName property) if it isn’t already open. Any method accessing the properties cursor first calls CreatePropCursor() to ensure the properties cursor is open.

Syntax
object.CreatePropCursor()

Return Types
Logical, True if the properties cursor is open, otherwise False.

Method Status
Public only because some BaseMgr methods call it; this method isn’t likely used outside of DBCXMgr or BaseMgr.

DBCXCreateProp

Calls an extension manager’s DBCXCreateProp method.

Syntax
object.DBCXCreateProp(cProperty, cDBCX [, cLongName [, cDataType [, nLength [, nDecimals]]]])

Arguments
cProperty

The name of the property to create.

cDBCX

The name of the extension manager where the property should be added.

cLongName

The long name of the property. If it isn’t specified, the property name is used as the long name.

cDataType

The data type for the new property.

nLength

The size of the new property.

nDecimals

The number of decimal places in the new property.

Return Types
Logical, True if the extension was able to create the property, otherwise False.

Method Status
Public.

Remarks
See BaseMgr.DBCXCreateProp for default values for unspecified parameters.

DBCXDeleteProp

Calls an extension manager’s DBCXDeleteProp method to remove a property from an extension.

Syntax
object.DBCXCreateProp(cProperty, cDBCX)

Arguments
cProperty

The name of the property to delete.

cDBCX

The name of the extension manager from which the property should be removed.

Return Types
Logical, True if the extension was able to remove the property, otherwise False.

DBCXDeleteRow

Calls each extension manager’s DBCXDeleteRow method.

Syntax
object.DBCXDeleteRow([cObject, cObjectType])

Arguments
cObject

The name of the data item (if it isn’t specified, the value of This.cObjectName is used).

cObjectType

The type of the data item (if it isn’t specified, the value of This.cObjectType is used).

Return Types
Logical, True if a call was made to an extension’s DBCXDeleteRow method and it returned True, otherwise False.

Method Status
Public.

Remarks
The parameter list for this method has changed from the previous release; use the DBCXMgr class instead of DBCXMgr for backward compatibility with code you’ve written. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXDeleteRow method, using either the newer syntax or the same syntax as the previous release.

DBCXGetAllObjects

This method creates an array of all objects of a certain type in the current database. Optionally, it can filter the objects so only those with a certain DBCX property set to a certain value are included. It can be used, for example, to get a list of all tables that have a security property above a certain value, to find all fields that don’t have a foreign language caption filled in yet, or to determine which tags the user can select from to navigate in a form.

The array it creates can either be one-dimensional, with the name of the data item in each row, or two-dimensional, with a specified DBC or DBCX property in the first column and the object name in the second. This allows you, for example, to create an array where the first column contains the caption for the indexes for a certain table and the second column contains the tag name. Such an array is ideal as the RowSource for a ComboBox or ListBox since it contains the text you want the user to see in the first column.

Syntax
object.DBCXGetAllObjects(cType, aArray [, cReturn [, cProperty, uValue]])

Arguments
cType

The type of object. If the type is “Field”, “Index”, or “Relation”, include the alias the objects are in as a second word in this parameter; for example, “Field Contacts” for all fields in the Contacts alias. The type can include a database by specifying <Database>!<cType>

aArray

An array (passed by reference) to contain the objects found. The array will be redimensioned to the number of rows based on the number of objects found, and to either one column containing the name of the object if cReturn (see below) isn’t specified or two columns, with the first containing the property specified in cReturn and the second the name of the object, if cReturn is specified.

cReturn

What to put into the first column of the array (optional: if it isn’t specified, the array has only one column containing the object name). “Caption” will return the caption property from the database for fields. Otherwise, this must contain a DBCX property name.

cProperty

The DBCX property to check.

uValue

The value to compare the property against; it can be an actual value or a string containing an expression to be evaluated with “VALUE” as a placeholder for the property, such as “VALUE > 10”

Return Types
Numeric, the number of elements found, or -1 if an error occurred.

Method Status
Public.

Remarks
This method is new in this version of DBCX.

DBCXGetProp

Calls an extension manager’s DBCXGetProp method.

Syntax
object.DBCXGetProp([cObject, cObjectType,] cProperty)

Arguments
cObject

The name of the data item (if it isn’t specified, the value of This.cObjectName is used).

cObjectType

The type of the data item (if it isn’t specified, the value of This.cObjectType is used).

cProperty

The name of the property.

Return Types
Dependent on the data type of the property.

Method Status
Public.

Remarks
If this method is unable to make the proper call to the extension manager’s DBCXGetProp method, if the specified object doesn’t exist in the meta data tables, or if the specified property doesn’t exist, a .NULL. value is returned.

The parameter list for this method has changed from the previous release; use the DBCXMgr class instead of DBCXMgr for backward compatibility with code you’ve written. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXGetProp method, using either the newer syntax or the same syntax as the previous release. This method also no longer supports the evaluation of expressions (property values starting with “=”), since DBCX now exists in a private datasession and likely couldn’t properly evaluate the expression.

DBCXGetRowProp

Calls the extension manager’s DBCXGetRowProp method.

Syntax
object.DBCXGetRowProp(aArray [, cObject, cObjectType, [, cDBCX]])

Arguments
aArray

The array where the property values should be stored. This must be passed by reference.

cObject

The name of the data item (if it isn’t specified, the value of This.cObjectName is used).

cObjectType

The type of the data item (if it isn’t specified, the value of This.cObjectType is used).

cDBCX

The name of the extension manager to call (if it isn’t specified, all managers are called).

Return Types
Logical, True if property values were inserted into the array, otherwise False.

Method Status
Public.

Remarks
The parameter list for this method has changed from the previous release; use the DBCXMgr class instead of DBCXMgr for backward compatibility with code you’ve written. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXGetRowProp method, using either the newer syntax or the same syntax as the previous release. This method also no longer supports the evaluation of expressions (property values starting with “=”), since DBCX now exists in a private datasession and likely couldn’t properly evaluate the expression.

DBCXNotify

Notifies all extension managers when a successful DBCXSetProp or DBCXSetRowProp has been executed.

Syntax
object.DBCXNotify(cFromWhere, cObject, cObjectType, uValue, cManager, cProperty)

Arguments
cFromWhere

Where DBCXNotify is being called from: DBCXSetProp or DBCXSetRowProp.

cObject

The name of the data item.

cObjectType

The type of the data item.

uValue

The new value for the property if Notify is called from DBCXSetProp or the array (passed by reference) if it’s called from DBCXSetRowProp.

cManager

The manager whose property was changed if Notify is called from DBCXSetProp.

cProperty

The property name if Notify is called from DBCXSetProp.

Return Types
None

Method Status
Protected.

Remarks
The parameter list for this method has changed from the previous release. However, since this method is never called directly, that shouldn’t be a concern.

DBCXNotifyOneProperty

Does the actual work required by DBCXNotify.

Syntax
object.DBCXNotifyOneProperty(cObject, cObjectType, cManager, cProperty, uValue, iID)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

cManager

The manager whose property was changed.

cProperty

The property name.

uValue

The new value for the property.

iID

The DBCX ID of the object whose property was changed.

Return Types
None

Method Status
Protected.

Remarks
For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXNotify method, using either the newer syntax or the same syntax as the previous release. This method is new in this version of DBCX.

DBCXSetProp

Calls the proper extension manager’s DBCXSetProp method.

Syntax
object.DBCXSetProp([cObject, cObjectType,] cProperty, uValue)

Arguments
cObject

The name of the data item (if it isn’t specified, the value of This.cObjectName is used).

cObjectType

The type of the data item (if it isn’t specified, the value of This.cObjectType is used).

cProperty

The name of the property to set.

uValue

The new value for the property.

Return Types
Logical, True if the property value was changed successfully, otherwise False.

Method Status
Public.

Remarks
The parameter list for this method has changed from the previous release; use the DBCXMgr class instead of DBCXMgr for backward compatibility with code you’ve written. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXSetProp method, using either the newer syntax or the same syntax as the previous release.

DBCXSetRowProp

Calls the proper extension manager’s DBCXSetRowProp method.

Syntax
object.DBCXSetRowProp(aArray [, cObject, cObjectType] [, cDBCX])

Arguments
aArray

The array used to set the property values. This must be passed by reference.

cObject

The name of the data item (if it isn’t specified, the value of This.cObjectName is used).

cObjectType

The type of the data item (if it isn’t specified, the value of This.cObjectType is used).

cDBCX

The name of the extension manager to call (if it isn’t specified, all managers are called).

Return Types
Logical, True if at least one property value was changed, otherwise False.

Method Status
Public.

Remarks
The parameter list for this method has changed from the previous release; use the DBCXMgr class instead of DBCXMgr for backward compatibility with code you’ve written. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines how to call each extension manager’s DBCXSetRowProp method, using either the newer syntax or the same syntax as the previous release.

DBGetDBCKey

This method is located in the MetaMgr subclass of DBCXMgr. It returns the DBCX ID (the Core Properties manager IID value) for a data item. This method is provided for backward compatibility only, since DBCX IDs are no longer required for access to meta data records.

Syntax
object.DBGetDBCKey(cDBC, cObjectType, cObject)

Arguments
cDBC

The name of the database container where the object is located.

cObjectType

The type of the data item.

cObject

The name of the data item.

Return Types
Integer. The row ID of the data item. If the data item isn’t found in the meta data or an warning was issued, 0 is returned.

Method Status
Public.

Remarks
In the previous release of DBCX, if the data item didn’t exist in the meta data, a new DBCX ID was generated and the item is added to the meta data. This is no longer the case; if the data item doesn’t exist in the meta data, use the Validate method to ensure the meta data is correct.

Destroy

Releases all extension manager class libraries upon release of the DBCXMgr object.

Syntax
release object
Return Types
Logical, True.

Error

Handles an error in DBCXMgr. The warning is logged to the aErrorInfo property array and the lErrorOccurred property is set to True; see the section in this documentation for that property for the structure of the array. If the lDebugMode property is True, the VFP Debugger is displayed and execution is suspended. If the lSuppressErrors property is True, no error message is displayed. If a global error handler is in effect, it’s called. If not, an error message is displayed (even if the lDebugMode property is False). In this case, the user is given the option to select OK or Cancel.

Return Types
Logical, True.

Execute

Executes a VFP command.

Syntax

object.Execute(cCommand)

Arguments
cCommand

The command to excute.

Return Types
Logical, True if the command was successfully executed, otherwise False.

Method Status
Public.

Remarks
Since DBCXMgr has in a private datasession, accessing the meta data tables directly for manipulation in ways other than those supported by DBCX is messy. This method is useful for doing things such as performing a SQL SELECT from meta data tables into an array.

FindObject

Positions the meta data table for each extension manager to the specified object..

Syntax

object.FindObject(cObject, cObjectType)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, True if the object was found in the Core properties manager’s meta data table, otherwise False.

Method Status
Public.

Remarks
This method is new in this version of DBCX.

FindProperty

Searches the DBCX properties cursor for a property.

Syntax

object.FindProperty(cProperty)

Arguments
cProperty

The name of the property to search for.

Return Types
Logical, True if the property is in the properties cursor, otherwise False.

Method Status
Protected.

Remarks
The property name is searched for both in the cLongName and cProperty fields of the properties cursor. This allows extension managers to provide long names for properties, such as “Tag Expression”, in addition to the property name (CBmTagExpr in this case). It also provides a mechanism for mapping one property to another. For example, if a property has SDTCaption for the long name and CBcCaption for the property name, any reference to the SDTCaption property will in fact access the CBcCaption property.

GetCoreMgrID

Returns the CoreMgr iID property (the DBCX ID) for a data item.

Syntax

object.GetCoreMgrID(cObject, cObjectType)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Integer, the DBCX ID from the Core Manager’s meta data for the specified data item or .NULL. if the item is not in the meta data.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

GetDatabase

Returns the database name for a specified object.

Syntax

object.GetDatabase(cObject)

Arguments
cObject

The name of the data item.

Return Types
Character, the name of the database for the object using the following algorithm:

· <database> if it’s specified using the VFP syntax <database>!<objectname>

· DBC() if it isn’t empty

· This.cCurrentDBC if neither of the above succeed

Method Status
Public only because some BaseMgr methods call it.

Remarks
This method is new in this version of DBCX.

Init

Performs initialization tasks when DBCXMgr is instantiated.

Syntax
object = CREATEOBJECT('DBCXMgr' [, lDebugMode [, cPath [, lAutoCreate]]])

Arguments
lDebugMode

If True is passed, DBCXMgr will be in “debug mode”; it will display warning messages when problems occur. If debug mode is turned off, warning messages are not displayed.

cPath

The path to the registry table (optional: if it isn’t specified, DBCXMgr will look in the current directory and VFP path).

lAutoCreate

If True is passed and the registry table doesn’t exist, it’s created.

Return Types
Logical, True if DBCXMgr was successfully instantiated.

Remarks
Init sets the lDebugMode property to the lDebugMode parameter and the cRegistryPath property to the cPath parameter. If the lAutoCreate parameter is True and the registry table doesn’t exist, Init calls the CreateDBCXMeta method to create the registry table; CreateDBCXMeta calls RegisterManager to automatically register and instantiate the Core Properties manager. Each manager’s CheckDBCXMeta method is called to determine if the meta data structures need to be updated; if any method returns True, each manager’s ConvertDBCXMeta method is called if the user selects “Yes” when asked if the data should be converted.

InstantiateManager

Instantiates an extension manager and adds it to the aManagers array property.

Syntax
object.InstantiateManager(cLibPath, cClassName [, cObject])

Arguments
cLibPath

The name and path to the class library containing the extension manager class.

cClassName

The name of the extension manager class.

cObject

The name to give the instantiated manager (if it isn’t specified, the name is “O” plus the name of the class; for example, “oCoreMgr” for the CoreMgr class).

Return Types
Logical, True if the manager was successfully instantiated.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

JustFName

Returns a file name without a path.

Syntax
object.JustFName(cFileName)

Arguments
cFileName

The name of the file.

Return Types
Character, the name of the file without a path.

Method Status
Public only because some BaseMgr methods call it, although it could be used to replace the FOXTOOLS function of the same name.

Remarks
This method is new in this version of DBCX.

JustStem

Returns a file name without a path or extension.

Syntax
object.JustStem(cFileName)

Arguments
cFileName

The name of the file.

Return Types
Character, the name of the file without a path or extension.

Method Status
Public only because some BaseMgr methods call it, although it could be used to replace the FOXTOOLS function of the same name.

Remarks
This method is new in this version of DBCX.

NewID

Generates and returns a new DBCX ID value based on the last value used in the System Record of the Registry table.

Syntax
object.NewID()

Return Types
Numeric/Integer, the value of the newly generated DBCX ID.

Method Status
Public only because some CoreMgr methods call it; this method isn’t likely used outside of DBCXMgr or CoreMgr.

OpenDBCXMeta

Opens the DBCX registry table if it isn’t already open. Any method accessing the registry table first calls OpenDBCXMeta() to ensure the registry table is open.

Syntax
object.OpenDBCXMeta(lExclusive)

Arguments
lExclusive

True if the registry table should be opened exclusively.

Return Types
Logical, True if the registry table is open or could be opened, otherwise False.

Method Status
Public only because some BaseMgr methods call it; this method isn’t likely used outside of DBCXMgr or BaseMgr.

RegisterCoreMgr

Registers the CoreMgr extension manager in the registry table and instantiates it by calling InstantiateManager.

Syntax
object.RegisterCoreManager()

Return Types
Logical, True if the CoreMgr was registered and instantiated, otherwise False.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

RegisterManager

Registers an extension manager in the registry table and instantiates it by calling InstantiateManager. This method can be used to programmatically add a new manager to a DBCX registry.

Syntax
object.RegisterManager(cProduct, cPath, cLibrary, cClassName [, cObject])

Arguments
cProduct

The full name of the extension manager.

cPath

The path to the class library containing the extension manager class.

cLibrary

The name of the class library containing the extension manager class.

cClassName

The name of the extension manager class.

cObject

The name to give the instantiated manager.

Return Types
Logical, True if the extension manager was registered and instantiated, otherwise False.

Method Status
Public.

Remarks
This method is new in this version of DBCX.

ResetError

Resets the aErrorInfo array to a single empty row and sets the lErrorOccurred property to False.

Syntax
object.ResetError()

Return Types
Logical, always True.

Method Status
Public.

Remarks
This method is new in this version of DBCX.

SetDatabase

Sets the cCurrentDBC property to a specific database and selects it. This method is important because DBCXMgr has a private datasession. As a result, it doesn’t “see” any open databases open in other (even the default) datasession. This method selects the specified database so functions like DBGETPROP() will work within DBCXMgr, and also uses the selected database as the default if a database isn’t specified with object names in calls to methods like DBCXGetProp that accept an object name parameter.

Syntax
object.SetDatabase(cName)

Arguments
cName

The name of the database.

Return Types
Logical, True if the database was selected.

Method Status
Public.

Remarks
This method is new in this version of DBCX.

Show

Displays the DBCXMgr form and instructs each manager to display its user interface.

Syntax
object.Show([nStyle])

Arguments
nStyle

1 to display DBCXMgr as a modal form.

Return Types
None

Remarks
This method is new in this version of DBCX.

Method Status
Public.

ShowStatus

Displays a message showing the status of certain functions, such as Validate, that may take a while to perform.

Syntax
object.ShowStatus([cMessage [, nNumber [, nTotal]]])

Arguments
cMessage

A message to display.

nNumber

The item number of the current item being processed.

nTotal

The total number of items being processed.

Return Types
None

Remarks
This method does nothing if the lShowStatus property is False

Method Status
Protected.

StripDatabase

Removes the database from an object name.

Syntax

object.StripDatabase(cObject)

Arguments
cObject

The name of the data item.

Return Types
Character, the object name with any specified database stripped off.

Method Status
Public only because some BaseMgr methods call it.

Remarks
This method is new in this version of DBCX.

Validate

This method ensures that database objects are synchronized with the meta data managed by DBCX. Validate can validate a single object (such as a field), a “container” object (such as a table, which consists of the table itself as well as the fields and indexes for the table), or an entire database. Validate processes all objects in a container. For example, validating a table validates the table, its fields, and indexes, while validating a database validates all objects contained in that database.

Syntax
object.Validate([cObject, cObjectType])

Arguments
cObject

The name of the data item (if it isn’t specified, the value of This.cCurrentDBC is used and the entire database is processed).

cObjectType

The type of the data item (if it isn’t specified, “Database” is assumed).

Return Types
Logical, True if the validation was processed, otherwise False.

Method Status
Public.

Remarks
The parameter list for this method has changed from the previous release. For backward compatibility with extension managers subclassed with the previous release of BaseMgr, this method determines which extension managers are based on DBCX 2, because only DBCX 2 based managers can validate anything other than the entire database.

Warning

Logs and optionally displays a warning message to the user. The warning is logged to the aErrorInfo property array; see the section in this documentation for that property for the structure of the array. The warning message is only displayed if the lDebugMode property is True.

Syntax
object.Warning(cMessage [, cMethod])

Arguments
cMessage

The message to display.

cMethod

The method in which the error occurred (if it isn’t specified, the name of the calling method is determined by examining the call stack).

Return Types
None

Method Status
Public only because some BaseMgr methods call it; this method isn’t likely used outside of DBCXMgr or BaseMgr.

Remarks
This method is new in this version of DBCX.

Changes From the Previous Release of DBCX

DBCXMgr was previously based on the VFP Custom base class. It is now based on Form, and the Caption and Datasession properties were set as described earlier.

The following properties were removed:

cClassName (the form Caption can be used instead)

iMaxID (the next ID value is obtained from the DBCX registry table)

lRegistryOpen (since we have a private datasession, we don’t need this)

The following properties were added:

cObjectName

cObjectType

cValidateObjectName

cValidateObjectType

cVersion

lErrorOccurred

lNotify

lSuppressErrors

nDataSessionID

The following methods were removed:

Add2MasterArray

DBCXFindInDBC

ConvertToChar

GetDataType

GetDBC

GetDBCXID

GetManagers

GetObject

GetRelation

GetShowOrPrintInfo

IsGoodID

OpenDBC

Print

PrintForm

PutDBCXID

RemoveIDRow

Show

ShowForm

ShowProps

The following methods were added:

AddDatabaseToObjectName

CloseOpenedCursors

ConvertDBCXMeta

CreateDBCXMeta

DBCXGetAllObjects

DBCXNotifyOneProperty

Error

Execute

FindObject

GetCoreMgrID

GetDatabase

InstantiateManager

JustFName

JustPath

RegisterCoreMgr

RegisterManager

ResetError

SetDatabase

Show

StripDatabase

Warning

Most methods were rewritten to support new features in DBCX.

The Base Manager Class
Introduction

A class named BaseMgr (located in DBCXMGR.VCX) can be subclassed in order to provide base functionality to your own managed classes. BaseMgr is based on the VFP Custom base class. It uses DBCXMGR.H as its include file; this file contains constants (whose names all start with “cc”) for strings that may be displayed to the user, providing an easy mechanism for translating these strings into other languages.

Properties of the Base Manager Class

cDBC

The database container name used by the extension manager. This is a protected property.

cDBCNameField

The name of the field in the meta data table containing the database name for an object. The default value for this protected property is “DBCName”. This property is new in this version of DBCX.

cDBCXAlias

The alias name used for the extension table. This is a protected property.

cDBCXTag

The default index tag for the extension table. The default value for this protected property is “ObjectName” (note: in the previous release, the default was “iID”).

cObjectNameField

The name of the field in the meta data table containing the object name. The default value for this protected property is “ObjectName”. This property is new in this version of DBCX.

cObjectTypesHandled

A string of object types this manager will validate, with each type being represented by a single letter. This allows a particular manager to only process certain object types and not others (for example, a manager could omit relations). The default value for this property is “DTVCRFIPU”, meaning the manager will validate databases, tables, views, connections, relations, fields, indexes, view parameters, and user-defined objects. This property is new in this version of DBCX.

cPrefix

The prefix used by this extension for field names to create property names.

cProcessField

The name of the field in the meta data table that indicates which objects are processed during validation. This protected property is new in this version of DBCX.

cProductName

The name of the product that uses this extension.

cRecTypeField

The name of the field in the meta data table containing the object type. The default value for this protected property is “RecType”. This property is new in this version of DBCX.

cVersion

The version number of the class. The existence of this property can be used to determine if the instance of a manager is version 2 or later, since this property didn’t exist in previous versions of DBCX.

lUICreated

This protected property is initially set to False, but is set to True once the user interface for the manager has been displayed by calling its ShowUI method. This flag prevents the user interface objects from being instantiated more than once.

Methods of the Base Manager Class

AddRow

This method is called any time a new object is added to the meta data. Each individual manager should determine what to do with the information associated with the new object.

Syntax
object.AddRow(iDBCXID, cDBC, cObject, cObjectType)

Arguments
iDBCXID

The DBCX ID of the data item. A manager may choose to ignore this value if it does not store ID values.

cDBC

The database container the data item belongs to.

cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, always true.

Method Status
Public only because some DBCXMgr methods call it.

Remarks
All base manager methods must accept the default parameters. Since this will be different for each manager, the base manager simply returns true.

CheckDBCXMeta

Determines if the meta data table for this manager needs to be updated to a new structure.

Syntax
object.CheckDBCXMeta()

Return Types
Logical, True if the structure must be updated.

Method Status
Public only because DBCXMgr.Init calls it.

Remarks
Since this will be different for each manager, the base manager simply returns False. This method is new in this version of DBCX.

ConvertDBCXMeta

Converts the meta data table for this manager to a new structure.

Syntax
object.ConvertDBCXMeta()

Return Types
Logical, always True.

Method Status
Public only because DBCXMgr.Init calls it.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

CreateDBCXMeta

Creates the meta data table for this manager.

Syntax
object.CreateDBCXMeta()

Return Types
Logical, True if the table was created.

Method Status
Public only because DBCXMgr.RegisterManager calls it.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

DBCXCreateProp

Creates a new property in an extension table.

Syntax
object.DBCXCreateProp(cProperty [, cLongName [, cDataType [, nLen [, nDecimals]]]])

Arguments
cProperty

The name for the new property.

cLongName

The long name for the new property. If it isn’t specified, the property name is used as the long name.

cDataType

The data type for the new property.

nLen

The size of the new property.

nDecimals

The number of decimal places in the new property.

Return Types
Logical, True if the new property was added to the extension table, otherwise False.

Method Status
Public only because some DBCXMgr methods call it.

Remarks
If values for cDataType, nLen, or nDecimals are not passed, the defaults are Memo, a value dependent on the data type, and 0 respectively.

The parameter list for this method has changed from the previous release.

DBCXDeleteProp

Removes a property from the meta data table.

Syntax
object.DBCXDeleteProp(cProperty, cDBCX)

Arguments
cProperty

The name of the property to remove.

cDBCX

For backward compatibility only.

Return Types
Logical, True if the property was deleted from the meta data, otherwise False.

Method Status
Public only because DBCXMgr.DBCXDeleteProp calls it.

DBCXDeleteRow

Deletes a record in the extension table.

Syntax
object.DBCXDeleteRow(cObject, cObjectType)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, True if the record was deleted, otherwise Ffalse.

Method Status
Public only because DBCXMgr.DBCXDeleteRow calls it.

Remarks
The parameter list for this method has changed from the previous release.

DBCXGetProp

Returns the value for a property.

Syntax
object.DBCXGetProp(cObject, cObjectType, cProperty)
Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

cProperty

The name of the property.

Return Types
Dependent on the data type of the property. If this method is successful, the value for the property is returned. If the method fails, .NULL. is returned.

Method Status
Public only because some DBCXMgr methods call it.

Remarks
The parameter list for this method has changed from the previous release. In addition, it no longer supports the evaluation of expressions (property values starting with “=”), since DBCX now exists in a private datasession and likely couldn’t properly evaluate the expression.

DBCXGetPropList

Populates a cursor with the name of all of the properties in the extension.

Syntax
object.DBCXGetPropList(cCursorName)

Arguments
cCursorName

The name of the cursor to populate.

Return Types
Logical, True if the property information was added to the property cursor, otherwise False.

Method Status
Public only because some DBCXMgr methods call it.

Remarks
This method only populates the cProperty, cObject, cProdName, and cLongName fields. If an extension would like to populate the other fields in the cursor, additional code will be required in the subclass of BaseMgr. Note that this would also be a place where mapping one property name to another could be accomplished. Since all DBCX methods search for a property by long name first, then property name, if the long name isn’t found, a manager that adds a record with a different long name than property name essentially maps the long name to the property name. This could even be used to map properties from one manager to another.

DBCXGetRowProp

Gets all property names and values into an array.

Syntax
object.DBCXGetRowProp(aArray, cObject, cObjectType)

Arguments
aArray

The array where the property values should be stored. This must be passed by reference.

cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, True if property values were inserted into the array, otherwise False.

Method Status
Public only because DBCXMgr.DBCXGetRowProp calls it.

Remarks
The parameter list for this method has changed from the previous release. This method also no longer supports the evaluation of expressions (property values starting with “=”), since DBCX now exists in a private datasession and likely couldn’t properly evaluate the expression.

DBCXNotify

This method is called any time a property value is changed in another extension.

Syntax
object.DBCXNotify(cObject, cObjectType, cDBCX, cProperty, uValue)

Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

cDBCX

The manager whose property was changed.

cProperty

The name of the property that was changed.

uValue

The new value for the property.

Return Types
None

Method Status
Public only because DBCXMgr.DBCXNotifyOneProperty calls it.

Remarks
Requests to change extended properties are passed through DBCXMgr to the extension manager via DBCXSetProp and DBCXSetRowProp. If one of these changes is successful, True is passed back to DBCXMgr, which then calls DBCXNotify so all registered managers are aware of the change.

The parameter list for this method has changed from the previous release. Also, rather than being called from DBCXSetRowProp with an array of changed properties, DBCNotify is now called with a single property and value at a time.

DBCXPackMeta

Attempts to pack the meta data table.

Syntax
object.DBCXPackMeta()

Return Types
None

Method Status
Public only because DBCXMgr.Validate calls it.

DBCXRemoveOrphan

Removes any orphan records from the meta data table.

Syntax
object.DBCXRemoveOrphan()

Return Types
None

Method Status
Public only because DBCXMgr.Validate calls it.

DBCXSetProp

Sets a property to the passed value.

Syntax
object.DBCXSetProp(cObject, cObjectType, cProperty, uValue)
Arguments
cObject

The name of the data item.

cObjectType

The type of the data item.

cProperty

The name of the property to set.

uValue

The value to set the property to.

Return Types
Logical, True if the property value was changed successfully, otherwise False.

Method Status
Public only because some DBCXMgr methods call it.

Remarks
The parameter list for this method has changed from the previous release.

DBCXSetRowProp

Sets all properties from values contained in an array.

Syntax
object.DBCXSetRowProp(aArray, cObject, cObjectType)

Arguments
aArray

The array used to set the property values. This must be passed by reference.

cObject

The name of the data item.

cObjectType

The type of the data item.

Return Types
Logical, True if at least one property value was changed, otherwise False.

Method Status
Public only because DBCXMgr.DBCXSetRowProp calls it.

Remarks
If a call to DBCXSetRowProp will change more than one property value and one of the changes fails for some reason, all of the original values are restored.

The parameter list for this method has changed from the previous release.

Destroy

Closes the database associated with the extension manager upon release of the BaseMgr object.

Syntax
release object
Return Types
Logical, True.

EnsureOneObject

Ensures we have one and only one record for the object in the meta data table.

Syntax
object.EnsureOneObject(cObject, cObjectType, cDBC)

Arguments
cObject

The name of the data item without the database.

cObjectType

The type of the data item.

cDBC

The database the data item belongs to.

Return Types
Logical. always True.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

Error

Handles an unforeseen error. It calls DBCXMgr’s Error method.

FindObject

Locates the specified object in the meta data table.

Syntax
object.FindObject(cObject, cObjectType, cDBC)

Arguments
cObject

The name of the data item without the database.

cObjectType

The type of the data item.

cDBC

The database the data item belongs to.

Return Types
Logical, True if the object was found in the meta data table, otherwise False.

Method Status
Public only because DBCXMgr.FindObject calls it.

Remarks
This method is new in this version of DBCX.

FlagUnprocessed

Flags all records for a given object and object type as unprocessed before validation begins. This is used for orphan removal; during validation, records are flagged as they are processed, and after validation is complete, all records for the given object and object type flagged as unprocessed are removed. The meaning of “processed” will vary from manager to manager; for example, CoreMgr clears the tLastMod field in COREMETA.DBF in this method, because this field is used as the “processed” flag.

Syntax
object.FlagUnprocessed(cObject, cObjectType, cDBC)

Arguments
cObject

The name of the data item without the database.

cObjectType

The type of the data item.

cDBC

The database the data item belongs to.

Return Types
Logical, True.

Method Status
Protected.

Remarks
This method is new in this version of DBCX.

GetDataName

Returns the field name in the extension table for a given property.

Syntax
object.GetDataName(cProperty)

Arguments
cProperty

The name of the property.

Return Types
Character, the actual name of the data item associated with the property.

Method Status
Protected.

GetObjectName

Strips any alias and database off an object name.

Syntax
object.GetObjectName(cObjectName)

Arguments
cObjectName

The object name is passed using the following structure:

· Database = <Empty value>

Returns an empty string.

· Table, Connection, View = <Name>

Returns the Table, Connection or View Name.

· Field = <TableName>.<FieldName>

Returns <FieldName>

· Index = <TableName>.<TagName>

Returns <TagName>

· Relation = <Parent Table>.<Parent Tag>,<Child Table>.<Child Tag>
Returns <Child Table>.<Child Tag>
Return Types
Character, the object name without an alias or database name.

Method Status
Protected.

GetParentName

Returns the parent object name.

Syntax
object.GetObjectName(cObjectName)

Arguments
cObjectName

The object name is passed using the following structure:

· Database = <Empty value>

Returns an empty string.

· Table, Connection, View = <Name>

Returns the Table, Connection or View Name.

· Field = <TableName>.<FieldName>

Returns <TableName>

· Index = <TableName>.<TagName>

Returns <TableName>

· Relation = <Parent Table>.<Parent Tag>,<Child Table>.<Child Tag>
Returns <Parent Table>.<Parent Tag>
Return Types
Character, the parent object name.

Method Status
Protected.

GetPropertyName

Returns the property name for a given field in the meta data table.

Syntax
object.GetPropertyName(cDataName)

Arguments
cDataName

The name of the field in the extension table.

Return Types
Character, the name of the property associated with a given data item.

Method Status
Protected.

OpenCursor

Opens a table or view.

Syntax
object.OpenCursor(cCursor [, cAlias])

Arguments
cCursor

The name of the table or view.

cAlias

The alias to assign to the cursor. If it isn’t specified, the name of the cursor is used with spaces replaced by underscores.

Return Types
Logical, True if the cursor was opened, otherwise False.

Method Status
Protected.

Remarks
This method is new in this version of DBCX; it formerly existed in CdbkMgr.

OpenDBCXMeta

Opens the meta data table associated with an extension manager.

Syntax
object.OpenDBCXMeta(lExclusive)

Arguments
lExclusive

True if the registry table should be opened exclusively.

Return Types
Logical, True if the meta data table was opened, otherwise False.

Method Status
Public only because the Execute method of DBCXMgr calls it.

Remarks
This method first checks to see if the meta data table is open using This.DBCXAlias. If the table is already open, the method simply returns True If the extension table is not open, this method will attempt to open it.

ShowUI

Displays the user interface for the manager in the DBCXMgr form.

Syntax
object.ShowUI()

Return Types
Logical, always True.

Method Status
Public only because DBCXMgr.Show calls it.

Remarks
Since this will be different for each manager, the base manager simply returns True. An extension manager’s implementation should do nothing if the lUICreated property is .T., and should set this property to .T. once it has completed its tasks. This method is new in this version of DBCX.

Validate

Validates the extended information for the specified data object.

Syntax
object.Validate(cObject, cObjectType, cDBC)

Arguments
cObject

The name of the data item without the database name.

cObjectType

The type of the data item.

cDBC

The database the data item belongs to.

Return Types
Logical, True if the object was validated, otherwise False.

Method Status
Public only because DBCXMgr.Validate calls it.

Remarks
The parameter list for this method has changed from the previous release.

ValidateConnection

Validates a connection.

Syntax
object.ValidateConnection(cObject)

Arguments
cObject

The name of the connection.

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateDatabase

Validates a database.

Syntax
object.ValidateDatabase(cObject)

Arguments
cObject

The name of the database.

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateField

Validates a field.

Syntax
object.ValidateField(cParent, cAlias, cField, lFree)

Arguments
cParent

The name of the table or view the field belongs to.

cAlias

The alias of the table or view (normally the same as cParent but spaces are replaced with underscores).

cField

The name of the field.

lFree

True if the table is a free table.

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateIndex

Validates an index.

Syntax
object.ValidateIndex(cParent, cAlias, cIndex, lFree)

Arguments
cParent

The name of the table the index belongs to.

cAlias

The alias of the table (normally the same as cParent but spaces are replaced with underscores).

cIndex

The name of the index.

lFree

True if the table is a free table.

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateRelation

Validates a relation.

Syntax
object.ValidateRelation(cObject)

Arguments
cObject

The name of the relation.

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateTable

Validates a table.

Syntax
object.ValidateTable(cObject, cAlias)

Arguments
cObject

The name of the table.

cAlias

The alias of the table (normally the same as cParent but spaces are replaced with underscores).

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

ValidateView

Validates a view.

Syntax
object.ValidateView(cObject, cAlias)

Arguments
cObject

The name of the view.

cAlias

The alias of the view (normally the same as cParent but spaces are replaced with underscores).

Return Types
Logical, True.

Method Status
Protected.

Remarks
Since this will be different for each manager, the base manager simply returns True. This method is new in this version of DBCX.

Warning

Displays an error message to the user.

Syntax
object.Warning(cMessage [, cMethod])

Arguments
cMessage

The message to display.

cMethod

The method in which the error occurred (if it isn’t specified, the name of the calling method is determined by examining the call stack).

Return Types
Logical, True.

Method Status
Protected.

Remarks
This method simply calls This.Parent.Warning. This method is new in this version of DBCX.

Changes From the Previous Release of DBCX

The following properties were removed:

lCloseTables (True to close any tables the manager opened)

The following properties were added:

cDBCNameField

cObjectNameField

cObjectTypesHandled

cProcessField

cRecTypeField

cVersion

lUICreated

The following methods were removed:

DBCXCheckCritical

DBCXIsDetached

GetDataType

GetPrintOrShowInfo

Print

SetRow

Show

The following methods were added:

CheckDBCXMeta

ConvertDBCXMeta

CreateDBCXMeta

EnsureOneObject

FindObject

Error

FlagUnprocessed

OpenCursor

ShowUI

ValidateConnection

ValidateDatabase

ValidateField

ValidateIndex

ValidateRelation

ValidateTable

ValidateView

Warning

Most methods were rewritten to support new features in DBCX.

The Core Properties Manager

Introduction

A subclass of BaseMgr named CoreMgr is located in DBCXMGR.VCX. CoreMgr manages those properties considered to be “core” properties. These properties are mainly structural properties of data objects, such as field type and index expression. It uses DBCXMGR.H as its include file; this file contains constants (whose names all start with “cc”) for strings that may be displayed to the user, providing an easy mechanism for translating these strings into other languages.

Meta Data Structure

Here is the structure of COREMETA.DBF, the meta data table maintained by CoreMgr:

Field
Type
Size
Purpose

iID
I
4
This will be an incremented value. The last value used will be stored in the DBCX registry table.

cDBCName
C
119
The name of the database container (without a path or extension) associated with a data item. This field will be empty if the data item is not associated with a database container, such as a free table. Note: this size was changed from CDBKMETA.

cRecType
C
1
A letter that describes what the record represents. The following are the possible values:

C = Connection

D = Database

F = Field

I = Index

R = Relation

T = Table

V = View

U = User-defined object, such as a virtual field

Note: this range of values is different from the previous release of DBCX.

cObjectNam
C
120
The name of the data object. Note: this field didn’t exist in CDBKMETA.

mPath
M
4
The path to the object if it isn’t associated with a database container.

nCodePage
N
5
The code page for the table. Note: this field didn’t exist in CDBKMETA.

nBlockSize
N
5
The block size for the memo file for the table. Note: this field didn’t exist in CDBKMETA.

cCaption
C
128
The caption for the object. Note: this field didn’t exist in CDBKMETA.

mTagFilter
M
4
The expression used if the index tag is a filtered index.

mTagExpr
M
4
The index expression.

cTagType
C
1
This is the type of index. The values are as follows:

C = Candidate

P = Primary

U = Unique

R = Regular

cCollate
C
10
The collate sequence for the index. Note: this field didn’t exist in CDBKMETA.

lAscending
L
1
The default order of an index tag. This will be True for ascending and False for descending.

mExpr
M
4
The expression for a virtual field.

nField
N
3
The field number in a table.

cType
C
1
The data type for a data item. This is required for all records where the cField field is not empty. Valid values are:

C - Character

D - Date

T - Datetime

L - Logical

M - Memo

G - General

Y - Currency

N - Numeric

B - Double

F - Float

P - Picture

I - Integer

C - Character Binary

M - Memo Binary

lBinary
L
1
If the field type is C or M, this will indicate if the data is character binary or memo binary data that you want to maintain without change across code pages.

nSize
N
3
The size of a data item. This is required for all records where the cField field is not empty.

nDecimals
N
3
The number of decimal places in a numeric data item.

lNull
L
1
This will be True if a field can contain .NULL. values.

mFormat
M
4
The Format for the field. Note: this field was renamed from mInFormat in CDBKMETA.

mInputMask
M
4
The InputMask for the field.

mNotes
M
4
Stores any additional notes that may be necessary.

mComment
M
4
Comments about the object. Note: this field didn’t exist in CDBKMETA.

tLastMod
T
8
The DateTime of the last modification.

There are three indexes on COREMETA.DBF:

Tag Name
Index Expression
Type
Filter

iID
iID
Regular

Deleted
DELETED()
Regular

ObjectName
UPPER(cDBCName + cRecType + cObjectNam)
Regular

Properties of the Core Properties Manager Class

cDBCNameField

The value is set in the Property Sheet to “cDBCName”.

cDBCXAlias

The value is set in the Property Sheet to “CoreMeta”.

cObjectNameField

The value is set in the Property Sheet to “cObjectNam”.

cPrefix

The value is set in the Property Sheet to “CB”.

cProcessField

The value is set in the Property Sheet to “tLastMod”.

cProductName

The value is set in the Property Sheet to “Core Manager”.

cRecTypeField

The value is set in the Property Sheet to “cRecType”.

Methods of the Core Properties Manager Class

The following BaseMgr methods are overridden in CoreMgr: AddRow, CheckDBCXMeta, ConvertDBCXMeta, CreateDBCXMeta, DBCXGetPropList, FlagUnprocessed, ValidateConnection, ValidateDatabase, ValidateField, ValidateIndex, ValidateRelation, ValidateTable, and ValidateView.

Changes From the Previous Release of DBCX

The following properties were removed:

lNamingConvention

nDetachedID

The following methods were removed:

AddViewParam

CloseTables

FindID

GetCursorName

GetFieldProp

GetJoinProp

GetParams

GetTagProp

InsertParameter

IsDBCParam

IsDBCXParam

Params2Array

SetCritical

The following fields were removed from CDBKMETA.DBF to create COREMETA.DBF:

cCursor

cCursor2

cTagName

nCDXOrder

mParentExpr

mChildExpr

cChildTbl

cField

cScxPrompt

cDlgPrompt

cLstPrompt

cFrxCol1

cFrxCol2

mInFormat (renamed to mFormat)

mOutFormat

mMessage

mToolTip

mRangeLo

mRangeHi

mHelpText

The following fields were added to CDBKMETA.DBF to create COREMETA.DBF:

cObjectNam

nCodePage

nBlockSize

cCaption

cCollate

mComment

mInputMask

mFormat (renamed from mInFormat)

nField

All tags except DELETED and IID were removed from CDBKMETA.DBF to create COREMETA.DBF.

The following tags were added to CDBKMETA.DBF to create COREMETA.DBF:

ObjectName

CoreMgr will automatically convert an existing CDBKMETA.DBF to its equivalent COREMETA.DBF the first time CoreMgr is instantiated (the ConvertDBCXMeta method does this job). It doesn’t delete CDBKMETA.DBF, but unregisters the Codebook manager from the DBCX registry table.

